Error Detection and Data Quality Rule Discovery

Lecture 2 Error Detection and Data Quality Rule Discovery

Extracting Information from Data

Data Cleaning Course

Introduction

FD discovery

Overview of methods

Naive methods

TANE

Approximate FD discovery

CFD discovery

Order dependencies

DC discovery

Lecture 2

Error Detection and Data Quality Rule Discovery

Extracting Information from Data

Data Cleaning Course

ntroduction

FD discovery

Overview of methods

Naive methods

TANF

Approximate FD discovery

CFD discovery

Order dependencies

DC discovery

Detecting errors

When constraints are given

aueries.

"easy" checks on top of a DBMS.

We have seen many different types of data quality dependencies.

Data Quality Rule

Overview of methods Naive methods

CFD discovery

Order dependencies

DC discovery

discovery

Conclusion

FD discovery

TANE

In the constraint-based data quality "paradigm"

"Frrors are violations of the constraints"

- Nevertheless, largely unexplored area of research.
 - Increased efficiency by using specialised indexes?
 - Incremental maintenance (violations are continuously monitored)?

Checking for violations (=errors) is a matter of implementing

There has been work on detecting violations by means of SQL

Distributed violation checking (when data is partitioned)?

Most work, however, relates to **discovering the constraints**, which can then be used to detect the errors.

We focus on the discovery task ...

Introduction

FD discovery

Overview of methods

Naive methods

TANE

Approximate FD discovery

CFD discovery

Order dependencies

DC discovery

Where do data quality constraints/dependencies come from?

Manual design (expensive and time consuming).

• Business rules (not expressive enough).

Dependency discovery: Idea

Given a sample of the data, find data quality dependencies that hold on the sample.

Inspiration from data mining algorithms:

Data mining techniques have been successfully applied to discover some of the data quality rules that we have seen earlier.

There already many different algorithms for a variety of dependencies!

Error Detection and Data Quality Rule Discovery

troduction

FD discovery

Overview of methods

Naive methods

TANF

discovery

CFD discovery

Order dependencies

DC discovery

Conclusion

5

FD discovery Overview of methods Naive methods

discovery

CFD discovery

DC discovery

Conclusion

TANE

Order dependencies

FDs TANE: An Efficient Algorithm for Discovering Functional and Approximate Dependencies, Y. Huhtala, J. Kärkkainen, P. Porkka, H. Toivonen, Computer Journal, 1999.

FDs DFD: Efficient Functional Dependency Discovery, Z. Abedian, P. Schulze, F. Naumann, CIKM 2014.

Discovering Conditional Functional Dependencies, W. Fan. F. Geerts, L. Jianzhong, M. Xiong, TKDE, 2010.

Discovering Data Quality Rules, F. Chiang, R. Miller, VLDB, 2008.

CFDs Estimating the confidence of conditional functional dependencies, G. Cormode, L. Golab, F. Korn, A. McGregor, D. Srivastava, X. Zhang, SIGMOD 2009.

Differential dependencies: Reasoning and discovery, S. Song, L. Chen, TODS, 2011

INDs Unary and n-ary inclusion dependency discovery in relational databases, F. De Marchi, S. Lopes, and J.-M. Petit., IIIS 2009

Divide & conquer-based inclusion dependency discovery, T. Papenbrock, S. Kruse, J.-A. Quianè-Ruiz, and F. Naumann, VLDB, 2015.

Discovering conditional inclusion dependencies, J. Bauckmann Z. Abedian, U. Leser, H. Müller, F. Naumann, CINDs CIKM 2012.

Discovering denial constraints, X. Chu, I. Ilvas, P. Papotti, VLDB, 2013.

Discovering editing rules for data cleaning, T. Diallo, J.-M. Petit, and S. Servigne, AQB, 2012.

MDs Discovering matching dependencies, S. Song and L. Chen. CIKM, 2009.

Discovery algorithms can be roughly classified as:

- Schema Driven
 - Usually sensitive to the size of the schema.
 - Good for long thin tables!
- Instance Driven
 - Usually sensitive to the size of the data.
 - Good for fat short tables!
- Hybrid
 - Try to get the best of both worlds...

Introduction

FD discovery

Overview of methods

Naive methods

TANE

Approximate FD discovery

CFD discovery

Order dependencies

DC discovery

Error Detection and Data Quality Rule

FD discovery Overview of methods Naive methods TANE

Approximate FD discovery

CFD discovery

Order dependencies

DC discovery

Conclusion

We start by looking at Functional Dependency (FD) discovery.

Problem Statement

Input: Database instance \mathcal{D} over schema R.

Output: Set Σ of all FDs $\varphi = R(X \to Y)$ that hold on \mathcal{D} , i.e., such that $\mathcal{D} \models \varphi$.

Uses

Schema design Key discovery Query optimization Data cleaning Anomaly detection Index selection

Introduction

Overview of methods Naive methods TANE

discovery

CFD discovery

Order dependencies

DC discovery Conclusion

• **Trivial:** Attributes in RHS ¹ are a subset of attributes on LHS

- $R([Street, City] \rightarrow [City])$
- Any trivial FD holds on a dataset.
- **Non-trivial:** At least one attribute in RHS does not appear on LHS.
 - $R([Street, City] \rightarrow [Zip, City])$
- Completely non-trivial: Attributes in LHS and RHS are disjoint.
 - $R([Street, City] \rightarrow [Zip])$

When discovering FDs...

Only interested in **completely non-trivial** functional dependencies.

FD disc

Overview of methods Naive methods TANE

iscovery

CFD discovery

Order dependencies

DC discovery

Introduction

¹RHS=right hand side; LHS=left hand side

Logical implication

ntroduction

FD disco

Overview of methods Naive methods TANE

Approximate FD discovery

CFD discovery

Order dependencies

Conclusion

DC discovery

⇒ Finding out when FDs can be derived from other FDs is known as an **implication problem**

• It suffices to only discover a **minimal set** of FDs from the

data, from which all other FDs that hold can be derived...

The implication problem

To determine,

- given a schema R, a set Σ of constraints and a single constraint φ defined on R,
- whether or not Σ implies φ , denoted by $\Sigma \models \varphi$.

That is, whether for **any** instance \mathcal{D} of R that satisfies Σ , \mathcal{D} also satisfies φ ($\mathcal{D} \models \varphi$).

Redundancy

To remove redundant data quality rules. Indeed, $\varphi \in \Sigma$ can be removed if $(\Sigma \setminus \{\varphi\}) \models \varphi$.

For FDs, this is easy to check.

Introduction

FD disc

Overview of methods Naive methods TANE

Approximate FD discovery

CFD discovery

Order dependencies

DC discovery

Reflexivity: If $Y \subseteq X$, then $X \to Y$

Augmentation : If $X \to Y$, then $XZ \to YZ$

Transitivity: If $X \to Y$ and $Y \to Z$, then $X \to Z$

Sound and **complete**: $\Sigma \models \phi$ iff ϕ can be inferred from Σ using the axioms

Example

Relation $R = \{A, B, C, G, H, I\}$ FDs $\Sigma = \{A \rightarrow B, A \rightarrow C, CG \rightarrow HCG \rightarrow I, B \rightarrow H\}$. Show:

- $\Sigma \models A \rightarrow H$. Why?
- $\Sigma \models CG \rightarrow HI$. Why?

FD disc

Overview of methods Naive methods TANE

Approximate FD discovery

CFD discovery

Order dependencies

DC discovery

Introduction

²We use $X \to Y$ to denote FD $R(X \to Y)$

Reflexivity: If $Y \subseteq X$, then $X \to Y$

Augmentation : If $X \to Y$, then $XZ \to YZ$

Transitivity: If $X \to Y$ and $Y \to Z$, then $X \to Z$

Sound and **complete**: $\Sigma \models \phi$ iff ϕ can be inferred from Σ using the axioms.

Example

Relation $R = \{A, B, C, G, H, I\}$ FDs $\Sigma = \{A \rightarrow B, A \rightarrow C, CG \rightarrow HCG \rightarrow I, B \rightarrow H\}$. Show:

- $\Sigma \models A \rightarrow H$. Why? $A \rightarrow B$, $B \rightarrow H$, transitivity, $A \rightarrow H$.
- $\Sigma \models CG \rightarrow HI$. Why?

FD disc

Overview of methods Naive methods TANE

Approximate FD discovery

CFD discovery

Order dependencies

DC discovery

Introduction

²We use $X \to Y$ to denote FD $R(X \to Y)$

Armstrong's axioms for FDs 2:

Reflexivity : If $Y \subseteq X$, then $X \to Y$

Augmentation : If $X \to Y$, then $XZ \to YZ$

Transitivity: If $X \to Y$ and $Y \to Z$, then $X \to Z$

Sound and **complete**: $\Sigma \models \phi$ iff ϕ can be inferred from Σ using the axioms.

Example

Relation $R = \{A, B, C, G, H, I\}$ FDs $\Sigma = \{A \rightarrow B, A \rightarrow C, CG \rightarrow HCG \rightarrow I, B \rightarrow H\}$. Show:

- $\Sigma \models A \rightarrow H$. Why? $A \rightarrow B$, $B \rightarrow H$, transitivity, $A \rightarrow H$.
- $\Sigma \models CG \rightarrow HI$. Why? Augmentation of $CG \rightarrow I$ to infer $CG \rightarrow CGI$, augmentation of $CG \rightarrow H$ to infer $CGI \rightarrow HI$, and then transitivity.

FD disc

Overview of methods Naive methods TANE

Approximate FD discovery

Order dependencies

DC discovery

CFD discovery

²We use $X \to Y$ to denote FD $R(X \to Y)$

Introduction

FD disc

Overview of methods Naive methods TANE

Approximate FD discovery

CFD discovery

Order dependencies

DC discovery

Conclusion

 \Rightarrow They must form a **minimal cover**

discover.

Recall, we want to pinpoint precisely which FDs are sufficient to

Minimal Cover

Given a set Σ of FDs, a **minimal cover** of Σ is a set Σ' of FDs

- such that Σ and Σ' are **equivalent**, i.e., $\Sigma \models \varphi'$ for all $\varphi' \in \Sigma'$ and $\Sigma' \models \varphi$ for all $\varphi \in \Sigma$; and
- **no proper subset** of Σ' has the previous property (it is minimal); and
- removing any attribute from a LHS of an FD in Σ' destroys equivalence (**non-redundancy**)

Discovery algorithms should preferably return a cover of all FDs that hold on a given instance!

Introduction

FD dis

Overview of methods Naive methods TANE

approximate FD iscovery

CFD discovery

Order dependencies

DC discovery

Algorithmically, you can either

Overview of methods Naive methods TANE

Approximate FD discovery

CFD discovery

Order dependencies

DC discovery

Conclusion

Post-process discovered FDs to obtain a cover

- - This can be done using Armstrong's axioms
- **Interleave redundancy checks** during discovery process
 - Most algorithms follow this approach

A lot of different algorithms:

- Schema-driven:
 - TANE [Huhtala et al, Computer Journal 1999]
 - FUN [Novelli et al., 2001]
 - FDMine[Yao et al., 2002]
 - DepMiner[Lopez et al., 2000]
- Instance-driven: FASTFD [Wyss et al, DaWaK, 2001]
- Hybrid:
 - FDEP [Flach et al.,1999]
 - DFD [Abedjan et al. 2015]
 - ...

Introduction

Overview of methods
Naive methods

TANE

Approximate FD discovery

CFD discovery

Order dependencies

DC discovery

Overview FD discovery

Error Detection and Data Quality Rule Discovery

Introduction

FD discovery

Overview of methods

Naive methods TANE

Approximate FD discovery

CFD discovery

Order dependencies

DC discovery

Conclusion

Describe some naive methods

- Describe TANE algorithm in detail
- Mention other methods

Naive Algorithm

- ¹ Function: find_FDs (\mathcal{D})
- $_{2}$ **return** All valid FDs arphi such that $\mathcal{D}\modelsarphi.$

for each attribute A in R do
for each $X \subseteq R \setminus \{A\}$ do
for each pair $(t_1, t_2) \in \mathcal{D}$ do
if $t_1[X] = t_2[X] \& t_1[A] \neq t_2[A]$ then

return $X \to A$

Complexity: For each of the |R| possibilities for RHS:

- check 2^{|R|-1} combinations for LHS
- scan the db $|\mathcal{D}|^2/2$ times for each combination.

Introduction

D discovery
Overview of methods

Naive methods TANE

Approximate FD discovery

CFD discovery

Order dependencies

DC discovery
Conclusion

Don't use this algorithm!

Very inefficient! No pruning of trivial or inferred FDs.

Less Naive Algorithm

- 1 Function: all count (D)
- return Store count(\mathcal{D}, X) for all $X \subseteq R$.
- ¹ Function: find_FD (\mathcal{D})
- ² **return** All valid FDs φ such that $\mathcal{D} \models \varphi$.
- 3 for each attribute A in R do **for** each $X \subseteq R \setminus \{A\}$ **do** if $count(\mathcal{D}, X) = count(\mathcal{D}, X \cup A)$ then return $X \to A$

Complexity:

LHS.

Precompute SELECT COUNT (DISTINCT X) FROM R. for

each $X \subseteq R$.

For each of the |R|possibilities for RHS: check $2^{|R|-1}$ combinations for

Overview of methods Naive methods

TANE

CFD discovery Order dependencies

DC discovery

Conclusion

Also don't use this algorithm!

Database scans are factored out of the loop, but still inefficient!

TANE algorithm improves on these naive methods.

Idea behind the approach:

- Reduce column combinations through pruning
 - Modelling of search space as lattice
 - Reasoning over FDs
- Reduce tuple sets through partitioning
 - Partition data according to attribute values
 - Level-wise increase of size of attribute set

Introduction

FD disc

Overview of methods Naive methods

TANE

Approximate FD discovery

CFD discovery

Order dependencies

DC discovery

Search space modelling

Model search space as power set lattice.

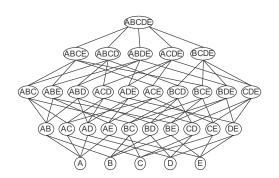
Power set lattice

• **Elements** in lattice: subsets of attributes in *R*;

• Partial order: $X \subseteq Y$;

• **Join** of two elements X and Y is $X \cup Y$;

• **Meet** of two elements X and Y is $X \cap Y$.



Error Detection and Data Quality Rule Discovery

Introduction

FD disco

Overview of methods Naive methods

TANE

Approximate FD discovery

CFD discovery

Order dependencies

DC discovery
Conclusion

The lattice structure brings some **order** in the exploration space.

Bottom up traversal through lattice

- only minimal dependencies
 - always tests for $X \setminus A \rightarrow A$ for $A \in X$
- Pruning
- Re-use results from previous level

Introduction

FD disco

Overview of methods Naive methods

Approximate FD discovery

CFD discovery

Order dependencies

DC discovery

Conclusion

Main idea:

For each visited element *X* in the lattice ⇒ maintain a **set of candidate RHS**.

RHS Candidate set C(X)

- When considering X, it stores only those attributes that might depend on all other attributes of X.
 - I.e., those that still need to be checked
 - If $A \in C(X)$ then A does not depend on any proper subset of X, i.e.,

$$C(X) = R \setminus \{A \in X \mid D \models X \setminus A \to A\}$$

Let $R = \{ABCD\}$ and suppose that $D \models A \rightarrow C$ and $D \models CD \rightarrow B$. Then,

- $C(A) = ABCD \setminus \{\} = C(B) = C(C) = C(D)$
- $C(AB) = ABCD \setminus \{\}$
- $C(AC) = ABCD \setminus \{C\} = ABD$
- $C(CD) = ABCD \setminus \{\}$
- $C(BCD) = ABCD \setminus \{B\} = ACD$

Introduction

D discovery

Overview of methods Naive methods

Approximate FD discovery

TANE

CFD discovery

Order dependencies

DC discovery Conclusion

Minimality Check

For minimality it suffices to consider $X \setminus A \rightarrow A$ where

- $A \in X$ and $A \in C(X \setminus \{B\})$ for **all** $B \in X$.
- I.e., A is in **all** candidate sets of the subsets.

Let $X = \{ABC\}$. Assume we know $C \rightarrow A$ from previous step.

- Need to test three dependencies: $AB \to C$, $AC \to B$, and $BC \to A$. We should not be testing $BC \to A$, because we know $C \to A$
- Candidate sets of subsets of ABC:

•
$$C(AB) = ABC$$
, $C(AC) = BC$, $C(BC) = ABC$

 E.g., BC → A does not need to be tested for minimality, because A is not in all three candidate sets:

$$A \notin \mathcal{C}(AB) \cap \mathcal{C}(AC) \cap \mathcal{C}(BC) = \{BC\}.$$

• $AB \rightarrow C$, $AC \rightarrow B$ need to be tested, because B and C appear in all candidate sets.

Introduction

Overview of methods Naive methods

TANE

Approximate FD discovery

CFD discovery

Order dependencies

DC discovery

Conclusion

conclusion

Final pruning step

- If $C(X) = \{\}$ then $C(Y) = \{\}$ for all $Y \supset X$.
 - I.e, prune all supersets
- No $Y \setminus \{A\} \to A$ can be minimal and Y can be ignored.



Introduction

FD disc

Overview of methods Naive methods

TANE

Approximate FD discovery

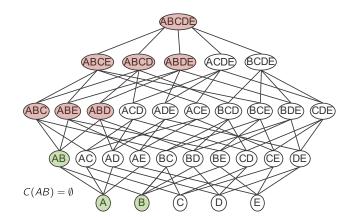
CFD discovery

Order dependencies

DC discovery
Conclusion

Final pruning step

- If $C(X) = \{\}$ then $C(Y) = \{\}$ for all $Y \supset X$.
 - I.e, prune all supersets
- No $Y \setminus \{A\} \to A$ can be minimal and Y can be ignored.



Introduction

FD disco

Overview of methods Naive methods

TANE

Approximate FD discovery

CFD discovery

Order dependencies

DC discovery Conclusion

Improved RHS candidate pruning

Using implication rules

Let $B \in X$ and let $X \setminus B \to B$ hold. Then,

$$X \to A$$
 implies $X \setminus B \to A$.

• E.g., $A \rightarrow B$ holds. Then $AB \rightarrow C$ implies $A \rightarrow C$.

Use this to reduce candidate set:

- If $X \setminus B \to B$ for some B, then any dependency with all of X on LHS cannot be minimal.
- Just remove B.

Revised C(X): $C^+(X)$

Define

$$\mathcal{C}^+(X) = \{ A \in R \mid \text{for all } B \in X,$$

$$X \setminus \{A, B\} \rightarrow B \text{ does not hold}\}$$

Special case: A = B, $C^+(X) = C(X)$.

Data Quality Rule
Discovery

Introduction

D discovery

Overview of methods

Naive methods TANE

discovery

CFD discovery

Order dependencies

DC discovery

Conclusion

Overview of methods Naive methods TANE

Approximate FD discovery

CFD discovery

Order dependencies

DC discovery

- The definition $C^+(X)$ removes three types of candidates:
 - $C_1 = \{A \in X \mid X \setminus A \to A \text{ holds}\}\$ (as before)
 - $C_2 = \{R \setminus X \mid \text{if there exists a } B \in X \text{ such that } X \setminus B \to B$ holds.}
 - $C_3 = \{A \in X \mid \text{ if there exists } B \in X \setminus A \text{ such that } \}$ $X \setminus \{A, B\} \rightarrow B \text{ holds } \}$

$$C^+(X) = \{A \in R \mid \text{for all } B \in X, X \setminus \{A, B\} \to B \text{ does not hold} \}$$

and

$$C_2 = \{R \setminus X \mid \text{if there exists a } B \in X \text{ such that } X \setminus B \to B \text{ holds.}\}$$

initially.

- Discovery of $C \rightarrow B$
- Remove B from $C^+(X)$
- Additionally remove $R \setminus X = D$.

Ok, because remaining combination of LHS contains B and C and $ABC \rightarrow D$ is not minimal because $C \rightarrow B$. Together: $C^+(ABC) = \{ABCD\} \setminus \{BD\} = \{AC\}$.

Consider $R = \{ABCD\}, X = \{ABC\}.$ Assume $C^+(X) = ABCD$

Introduction

Overview of methods
Naive methods

TANE

discovery

CFD discovery

Order dependencies

DC discovery
Conclusion

29

 $\mathcal{C}^+(X) = \{A \in R \mid \text{for all } B \in X, X \setminus \{A, B\} \to B \text{ does not hold} \}$

and

 $\mathcal{C}_3 = \{A \in X \mid \text{ if there exists } B \in X \setminus A \text{ such that } \}$

Same idea as before, but for subsets. Assume $Y \subset X$ such that $Y \setminus B \to B$ holds for some $B \in Y$. Then we can remove from $\mathcal{C}^+(X)$ all $A \in X \setminus Y$.

Consider X = ABCD and let $C \to B$. We have $BC = Y \subseteq X$ and $X \setminus Y = AD$.

Thus can remove all AD.

Ok, any remaining combination of LHS contains B and C. Hence $ABC \rightarrow D$ and $BCD \rightarrow A$. Again, since $C \rightarrow B$ any such FD is not minimal.

Together: $C^+(X) = C$.

Introduction

Overview of methods Naive methods

TANE

 $X \setminus \{A, B\} \rightarrow B \text{ holds}$

CFD discovery

Order dependencies

DC discovery Conclusion

30

Insight

If X is superkey and $X \setminus B \to B$, then $X \setminus B$ is also a superkey.

- If X is superkey, no need to test any $X \to A$.
- ② If X is superkey and not key, any $X \to A$ is not minimal (for any $A \notin X$).
- § If X is superkey and not key, if $A \in X$ and $X \setminus A \to A$ then $X \setminus A$ is superkey, and no need to test.

Can prune all keys and their supersets

Introduction

FD discovery

Overview of methods

Naive methods

discovery

CFD discovery

Order dependencies

DC discovery
Conclusion

TANE

- Function: tane(D)
- ² **return** All valid minimal FDs φ such that $\mathcal{D} \models \varphi$.

```
3 L_0 := \emptyset

4 C^+(\emptyset) := R

5 L_1 := \{A \mid A \in R\}

6 \ell = 1

7 while L_\ell \neq \emptyset do

8 | compute_dependencies(L_\ell)

9 | prune(L_\ell)

10 | L_{\ell+1} := \text{generate\_next\_level}(L_\ell)

11 | \ell := \ell + 1
```

Introduction

-D disco

Overview of methods Naive methods

TANE

Approximate FD discovery

CFD discovery

Order dependencies

DC discovery

 $L_{\ell+1} := \emptyset$

4 for $K \in \text{prefix_blocks}(L_{\ell})$ do for $Y, Z \subseteq K, Y \neq Z$ do

 $X := Y \cup Z$

if for all $A \in X$, $X \setminus A \in L_{\ell}$ then

 $L_{\ell+1} := L_{\ell+1} \cup X$

9 return $L_{\ell+1}$

Explanation

- $L_{\ell+1}$ consists of all X of size $\ell+1$ such that all $Y\subset X$ are in L_{ℓ} .
- Prefix blocks: disjoint sets from L_{ℓ} with common prefix of size $\ell-1$ (all pairs for $\ell=1$)
- Line 5. All subsets of a new set must appear in a lower level.

Overview of methods

Naive methods TANE

Approximate FD discovery CFD discovery

Order dependencies

DC discovery

TANE

Function:

 $_3$ for $X \in L_\ell$ do

- $compute_dependencies(L_{\ell})$
- ² return Minimal dependencies

```
for X \in L_{\ell} do

for A \in X \cap C^{+}(X) do

for A \in X \cap C^{+}(X) do

if X \setminus A \to A is valid then

return X \setminus A \to A

Remove A from C^{+}(X)

Remove all B \in R \setminus X

from C^{+}(X).
```

Explanation

- I4 Create candidate sets; each attribute must appear in all candidate sets of smaller size
- 16 Only test attributes from candidate set
- 17 Actual test on data
- 19 Reduce candidates by newly found dependency
- I10 Reduce candidates by all other attributes:

Introduction

FD disco

Overview of methods Naive methods

Approximate FD discovery

CFD discovery

Order dependencies

DC discovery
Conclusion

TANE: Pruning

TANE

```
Function: pruning(L_{\ell})
```

```
for X \in L_{\ell} do
         if \mathcal{C}^+(X) = \emptyset then
                delete X from L_{\ell}
5
```

```
if X is a (super) key then
      for A \in \mathcal{C}^+(X) \setminus X do
             Z := \bigcap_{B \in X} \mathcal{C}^+(X \cup A \setminus B)
             if A \in \mathbb{Z} then
```

return $X \to A$

Explanation

10

supersets cannot be created during level generation (loops not executed on empty candidate sets)

delete X from L_{ℓ}

Lines 4-8: Key pruning

• Line 3: Basic pruning. Deletion from L_{ℓ} ensures that

Data Quality Rule

Overview of methods Naive methods

TANE Approximate FD discovery

CFD discovery Order dependencies

DC discovery

R = ABCD, $C \to B$ and $AB \to D$ are to be discovered (Also: $AC \to D$ by implication)

- - $C^+(\emptyset) = ABCD$. Nothing to do
- 2 $L_1 = \{A, B, C, D\}.$
 - $C^+(X) = ABCD$ for all $X \in L_1$
 - Still nothing to do: No FDs can be generated from singletons
 - Thus, no pruning
- 3 $L_2 = \{AB, AC, AD, BC, BD, CD\}$
 - E.g.,

$$\mathcal{C}^{+}(AB) = \mathcal{C}^{+}(AB \setminus A) \cap \mathcal{C}^{+}(AB \setminus B) = ABCD \cap ABCD$$

- $C^+(X) = ABCD$ for all $X \in L_2$.
- Dep. checks for AB : A → B and B → A Nothing happens

Introduction

Overview of methods

Naive methods

TANE

Approximate FD discovery

CFD discovery

cr D discovery

Order dependencies

DC discovery

TANE Sample run (cnt'd)

3
$$L_2 = \{AB, AC, AD, BC, BD, CD\}$$

•
$$C^+(X) = ABCD$$
 for all $X \in L_2$

- Dep. checks for $BC: B \to C$ (no!) and $C \to B$ (yes!)
- Output $C \rightarrow B$
- Delete B from $C^+(BC) = ACD$
- Delete $R \setminus \{BC\}$ from $C^+(BC) = C$
- (Note $BC \rightarrow A$ and $BC \rightarrow D$ are not minimal).
- 4 $L_3 = \{ABC, ABD, ACD, BCD\}$
 - $C^+(ABC) = C^+(AB) \cap C^+(AC) \cap C^+(BC) = C$
 - $C^+(BCD) = C^+(BC) \cap C^+(BD) \cap C^+(CD) = C$
 - $C^+(ABD) = C^+(ACD) = ABCD$ unchanged
 - Dep. check for ABC: $ABC \cap C^+(ABC)$ are candidates
 - $AB \rightarrow C$ no! Did not check $BC \rightarrow A$ and $AC \rightarrow B$

Overview of methods

Naive methods TANE

CFD discovery

Order dependencies

DC discovery

- $4 L_3 = \{ABC, ABD, ACD, BCD\}$
 - $C^+(ABC) = C^+(BCD) = C$
 - $C^+(ABD) = C^+(ACD) = ABCD$
 - Dep. check for ABD: $ABD \cap C^+(ABD)$ are candidates
 - $AD \rightarrow B$ and $BD \rightarrow A$: no!
 - $AB \rightarrow D$: yes! Output $AB \rightarrow D$
 - Delete D from $C^+(ABD) = ABC$
 - Delete $R \setminus ABD$ from $C^+(ABD) = AB$
 - Dep. check for BCD: $BCD \cap C^+(BCD)$ are candidates
 - Only need to check BD → C: no!
 - Dep. check for ACD: $ACD \cap C^+(ACD)$ are candidates
 - $CD \rightarrow A$ and $AD \rightarrow C$: no!
 - $AC \rightarrow D$: yes! Output $AC \rightarrow D$
 - Delete D from $C^+(ABD) = ABC$
 - Delete $R \setminus ACD$ from $C^+(ABD) = AC$

ntroduction

FD disco

Overview of methods Naive methods

TANE

discovery

CFD discovery

order dependencies

DC discovery

 $L_4 = ABCD$

$$L_4 = ABCD$$

•
$$C^+(ABCD) = C^+(ABC) \cap C^+(ABD) \cap C^+(ACD) \cap C^+(BCD) = \{\}$$

- Nothing to check
- Did not need to check
- $BCD \rightarrow A$: Not minimal because $C \rightarrow B$
- $ACD \rightarrow B$: Not minimal because $C \rightarrow B$
- $ABD \rightarrow C$: Not minimal because $AB \rightarrow D$
- $ABC \rightarrow D$: Not minimal because $AC \rightarrow D$.
- 6 Done.
- 7 Ouput: $C \rightarrow B$, $AB \rightarrow D$, $AC \rightarrow D$.

Overview of methods

Naive methods

TANE

Approximate FD discovery

CFD discovery

Order dependencies

DC discovery

X-equivalence

Tuples s and t are X-equivalent wrt attribute set X if t[A] = s[A] for all $A \in X$.

X-Partitioning

Attribute set X partitions \mathcal{D} into **equivalence classes**:

$$[t]_X = \{ s \in \mathcal{D} \mid \forall A \in X, s[A] = t[A] \}.$$

Clearly,

$$\mathcal{D} = [t_1]_X \dot{\cup} [t_2]_X \dot{\cup} \cdots \dot{\cup} [t_k]_X.$$

for some t_1, \ldots, t_k . We denote the set of **parts by** π_X .

Overview of methods

Naive methods TANE

discovery

CFD discovery

Order dependencies

DC discovery

Order dependencies

Conclusion

TANE	

CFD discovery

DC discovery

tuple id	Α	В	С	D	
1	a_1	b_1	<i>c</i> ₁	d_1	$[1]_A = [2]_A = \{1, 2\}$
2	a_1	b_2	<i>c</i> ₂	d_3	$\pi_A = \{\{1, 2\}, \{3, 4, 5\},$
3	a_2	b_2	c_1	d_4	{6,7,8}}
4	a_2	b_2	c_1	d_1	$\pi_{BC} = \{\{1\}, \{2\}, \{3, 4\}, \{5\},$
5	a_2	b_3	<i>C</i> ₃	d_5	
6	a ₃	<i>b</i> ₃	c_1	d_6	{6}, {7}, {8}}
7	a ₃	b_4	C4	d_1	$\pi_D = \{\{1, 4, 7\}, \{2\}, \{3\}, \{5\}, $
8	a ₃	<i>b</i> ₄	C ₅	d_7	{6}, {8}}

- $X \to A$ if and only if π_X refines π_A .
- π_X refines π_A if and only if $|\pi_X| = |\pi_{XA}|$
- Why?
 - If π_X refines π_A then $\pi_{AX} = \pi_X$
 - π_{XA} always refines π_A
 - \Rightarrow If $\pi_{XA} \neq \pi_A$ then $|\pi_X| \neq |\pi_{XA}|$
 - \bullet \Rightarrow if $|\pi_X| = |\pi_{XA}|$ then $\pi_{XA} = \pi_X$.

Introduction

FD disco

Overview of methods
Naive methods
TANE

Approximate FD discovery

CFD discovery

Order dependencies

DC discovery

Partition π refines partition π' if every equivalence class in π is a subset of some equivalence class in π' .

- $X \to A$ if and only if π_X refines π_A .
- π_X refines π_A if and only if $|\pi_X| = |\pi_{XA}|$
- Why?
 - If π_X refines π_A then $\pi_{AX} = \pi_X$
 - π_{XA} always refines π_A .
 - \Rightarrow If $\pi_{XA} \neq \pi_A$ then $|\pi_X| \neq |\pi_{XA}|$
 - \bullet \Rightarrow if $|\pi_X| = |\pi_{XA}|$ then $\pi_{XA} = \pi_X$.

Introduction

FD discovery

Overview of methods

Naive methods

Approximate FD discovery

CFD discovery

Order dependencies

DC discovery

Partition refinement

Error Detection and Data Quality Rule

Partition π refines partition π' if every equivalence class in π is a subset of some equivalence class in π' .

- $X \to A$ if and only if π_X refines π_A .
- π_X refines π_A if and only if $|\pi_X| = |\pi_{XA}|$
- Whv?
 - If π_X refines π_A then $\pi_{AX} = \pi_X$
 - π_{XA} always refines π_A .
 - $\bullet \Rightarrow \text{If } \pi_{XA} \neq \pi_A \text{ then } |\pi_X| \neq |\pi_{XA}|$
 - \bullet \Rightarrow if $|\pi_X| = |\pi_{XA}|$ then $\pi_{XA} = \pi_X$.

Testing validity of FDs:

We have that $\mathcal{D} \models X \to A$ if and only if $|\pi_X| = |\pi_{XA}|$.

Introduction

Overview of methods Naive methods

TANE Approximate FD

CFD discovery

Order dependencies DC discovery

Testing validity of FDs:

We have that $\mathcal{D} \models X \to A$ if and only if $|\pi_X| = |\pi_{XA}|$.

Example

tuple id	A	В	
1	a ₁	b_1	
2	a_1	b_1	
3	a_2	b_1	$\pi_A = \{\{1, 2\}, \{3, 4, 5\}, \{6, 7, 8\},$
4	a_2	b_1	$\pi_B = \{\{1, 2, 3, 4, 5\}, \{6, 7, 8\}\}$
5	a ₂	b_1	
6	a ₃	b_2	$\pi_{AB} = \{\{1, 2\}, \{3, 4, 5\}, \{6, 7, 8\}\}$
7	a ₃	<i>b</i> ₂	
8	a ₃	b_2	

Hence, $|\pi_{AB}| = |\pi_A|$ and $A \to B$. Note, $|\pi_{AB}| > |\pi_B|$ and $B \to A$ does not hold.

Introduction

Overview of methods
Naive methods

Approximate FD discovery

TANE

CFD discovery

Order dependencies

DC discovery

Idea: Optimization

Remove equivalence classes of size 1 from partitions.

Why? Singleton equivalence class cannot violate any FD.

Issue with striped partitions

tuple id	Α	В	
1	a_1	b_1	
2	a_1	b_2	((1 0 0 4 5) (6 7) (0))
3	a_1	<i>b</i> ₃	$\pi_A = \{\{1, 2, 3, 4, 5\}, \{6, 7\}, \{8\}\}$
4	a_1	<i>b</i> ₃	$\pi_A' = \{\{1, 2, 3, 4, 5\}, \{6, 7\}\}$
5	a_1	<i>b</i> ₄	$\pi_{AB} = \{\{1\}, \{2\}, \{3, 4\}, \{5\}, \{6, 7\}, \{8\}\}$
6	a ₂	b_5	$\pi'_{AB} = \{\{3,4\},\{6,7\}\}$
7	a ₂	b_5	"AB ((3, 1), (3, 1))
8	a ₃	b_6	

Observe $|\pi'_{AB}| = |\pi'_{A}|$ yet $A \to B$ does not hold.

Introduction

FD disc

Overview of methods Naive methods

Approximate FD discovery

CFD discovery

Order dependencies

DC discovery

Idea: Optimization

Remove equivalence classes of size 1 from partitions.

Why? Singleton equivalence class cannot violate any FD.

Issue with striped partitions

tuple id	Α	В	
1	a_1	b_1	
2	a_1	b_2	((1 2 2 4 5) (6 7) (2))
3	a_1	<i>b</i> ₃	$\pi_A = \{\{1, 2, 3, 4, 5\}, \{6, 7\}, \{8\}\}$
4	a_1	<i>b</i> ₃	$\pi_A' = \{\{1, 2, 3, 4, 5\}, \{6, 7\}\}$
5	a_1	<i>b</i> ₄	$\pi_{AB} = \{\{1\}, \{2\}, \{3, 4\}, \{5\}, \{6, 7\}, \{8\}\}$
6	a ₂	<i>b</i> ₅	$\pi'_{AB} = \{\{3,4\},\{6,7\}\}$
7	a_2	b_5	"AB ((3, 1), (3, 1))
8	a ₃	<i>b</i> ₆	

Observe $|\pi'_{AB}| = |\pi'_{A}|$ yet $A \to B$ does not hold.

Introduction

FD discover

Overview of methods Naive methods

Approximate FD discovery

CFD discovery

Order dependencies

DC discovery

$$e(X) = \frac{\|\pi_X'\| - |\pi_X'|}{|D|}$$

where $\|\pi'_{\chi}\|$ is the sum of sizes of elements in π'_{χ} . Then, $X \to A$ if and only if e(X) = e(XA).

Example

$$\pi'_{A} = \{\{1, 2, 3, 4, 5\}, \{6, 7\}\}\}$$

$$\|\pi'_{A}\| = 7$$

$$\pi'_{AB} = \{\{3, 4\}, \{6, 7\}\}\}$$

$$\|\pi'_{AB}\| = 4$$

$$e(A) = (7 - 2)/8 = 5/8$$

$$e(AB) = 4 - 2/8 = 2/8.$$

Hence, $e(A) \neq e(AB)$ and $A \rightarrow B$ does not hold.

Overview of methods Naive methods

TANE Approximate FD

discovery

CFD discovery

Order dependencies DC discovery

compute_dependencies(L_{ℓ})

```
for X \in L_{\ell} do
    C^+(X) := \bigcap_{A \in X} C^+(X \setminus A)
4 for X \in L_{\ell} do
        for A \in X \cap C^+(X) do
              if X \setminus A \rightarrow A is valid then
                    return X \setminus A \rightarrow A
                    Remove A from
                     C^+(X)
                    Remove all B \in R \setminus X
                     from C^+(X).
```

Validity test

$$16 \ e(X \setminus A) = e(A)$$
?

Overview of methods Naive methods

TANE

discovery

CFD discovery

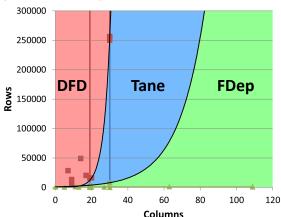
Order dependencies

DC discovery

Conclusion

Efficient algorithms in place to compute striped partitions.

Experimental comparison



- Source: Functional Dependency Discovery: An Experimental Evaluation of Seven Algorithms, Paperbrock et al, VLDB 2016
- https://hpi.de/naumann/projects/repeatability/dataprofiling/fds.html

Error Detection and Data Quality Rule Discovery

Introduction

FD discove

Overview of methods Naive methods

Approximate FD discovery

CFD discovery

Order dependencies

DC discovery

Approximate FD discovery

Error Detection and Data Quality Rule Discovery

Introduction

FD discovery

Overview of methods

Naive methods

TANE

Approximate FD discovery

CFD discovery

Order dependencies

DC discovery

Conclusion

We next generalise TANE for discovering approximate FDs

An approximate FD $X \rightarrow A$ holds on \mathcal{D} if

$$\operatorname{err}(X \to A) \leq \varepsilon$$
,

where

$$\operatorname{err}(X \to A) = \frac{\min\{|S| \mid S \subseteq \mathcal{D}, \mathcal{D} \setminus S \models X \to A\}}{|\mathcal{D}|}$$

i.e., minimum number of tuples to be removed from \mathcal{D} such that $X \to A$ holds.

TANE can be modified for approximate FDs

Introduction

FD discovery Overview of methods Naive methods TANE

CFD discovery

Order dependencies

DC discovery

Example

tuple id	Α	В
1	a_1	b_1
2	a_1	b_2
3	a_1	<i>b</i> ₃
4	a_1	<i>b</i> ₃
5	a_1	b_4
6	a_2	b_5
7	a_2	b_5
8	a ₃	b_6

tuple id	ΙA	В
3	a ₁	<i>b</i> ₃
4	a_1	<i>b</i> ₃
6	a_2	b_5
7	a_2	b_5
8	a ₃	b_6

We know $A \rightarrow B$ does not hold.

$$\operatorname{err}(X \to A) = 3/8$$

Error function can be efficiently computed using striped partitions.

Introduction

FD discovery

Overview of methods

Naive methods

TANE

pproximate FD iscovery

CFD discovery

Order dependencies

DC discovery

```
2 for X \in L_{\ell} do

3 C^{+}(X) := \bigcap_{A \in X} C^{+}(X \setminus A)

4 for X \in L_{\ell} do

5 for A \in X \cap C^{+}(X) do

6 if X \setminus A \to A is valid then

7 return X \setminus A \to A

8 Remove A from C^{+}(X)

9 Remove all B \in R \setminus X from C^{+}(X).
```

```
Line 6 is replaced by:
```

```
if \operatorname{err}(X \setminus A \to A) \leq \epsilon then
```

Line 9 is replace by:

if $X \setminus A \rightarrow A$ holds exactly **then**

Remove all $B \in R \setminus X$ from $C^+(X)$.

Introduction

TANE

FD discovery Overview of methods Naive methods

Approximate FD discovery

CFD discovery

Order dependencies

DC discovery

CFD Discovery

Error Detection and Data Quality Rule Discovery

Introduction

FD discovery

Overview of methods

Naive methods

TANE

Approximate FD discovery

CFD discovery

Order dependencies

DC discovery

Conclusion

TANE can also be generalised for discovering **conditional functional dependencies**.

Definition

A CFD is an FD $R(X \to Y)$ expanded with a pattern tableau

$$T_p = \begin{bmatrix} XA \\ t_p^1 \\ \vdots \\ t_p^k \end{bmatrix}$$

where t_p^1, \ldots, t_p^k are pattern tuples over $X \cup \{A\}$: constants, or wildcard .

Example CFD

$$\varphi_2: [CC = 44, ZIP] \rightarrow [STR]$$

- (cust : $[CC, ZIP] \rightarrow [STR], T_p$)
- pattern tableau T_p :

,	7IP	CTD
-	ZIP	SIK
.		

Introduction

FD discovery

Overview of methods Naive methods TANE

Order dependencies

DC discovery

A CFD $R(X \to Y, T_p)$ is satisfied on a database $\mathcal D$ iff for any

- if $s[X] = t[X] \times t_p[X]$ for some $t_p \in T_p$;
- then also $s[A] = t[A] \times t_p[A]$.

two tuples s and t in \mathcal{D} :

Introduction

FD discovery

Overview of methods

Naive methods

TANE

Approximate FD discovery

FD discovery

Order dependencies

DC discovery

Modifications needed to TANE:

- **1** Lattice: (X, t_p) -pairs where as in TANE, X is set of attributes, but extended with pattern tuple.
 - ⇒ Search space is much larger!
- 2 Pruning: Armstrong's axioms need to be revised
 - \Rightarrow Needed to define candidate RHS sets $\mathcal{C}^+(X, t_p)$.
- Traversal of lattice: Ensure that "most general" patterns are considered first

$$\Rightarrow$$
 If $R([AB] \rightarrow C, (a, _, _))$ holds, we don't need $R[([AB] \rightarrow C, (a, b, _))]$.

These modifications suffice to adapt TANE for CFDs!

Most challenging are the modification to Armstrong's axioms.

Introduction

FD discovery

Overview of methods Naive methods TANE

pproximate FD iscovery

D discovery

Order dependencies

DC discovery

Error Detection and Data Quality Rule Discovery

• FD1' (reflexivity): If $A \in X$, then $\varphi = (R : X \to A, t_p)$

Introduction

FD discovery

Overview of methods

Naive methods

TANE

Approximate FD discovery

CFD discovery

Order dependencies

DC discovery

Error Detection and Data Quality Rule Discovery

Introduction

FD discovery

Overview of methods

Naive methods

TANE

Approximate FD discovery

CFD discovery

Order dependencies

DC discovery

Conclusion

• FD1' (reflexivity): If $A \in X$, then $\varphi = (R : X \to A, t_p)$

	_		. ' .		
X_1		X_i	• • •	X_k	A
_		_		_	_

Error Detection and Data Quality Rule Discovery

• FD1' (reflexivity): If $A \in X$, then $\varphi = (R : X \to A, t_p)$

X_1	•••	A	•••	X_k	A
ı		a	• • •	1	a

Introduction

FD discovery

Overview of methods

Naive methods

TANE

Approximate FD discovery

Order dependencies

DC discovery

Error Detection and Data Quality Rule Discovery

• FD1' (reflexivity): If $A \in X$, then $\varphi = (R : X \to A, t_n)$

X_1	 A	•••	X_k	A
_	 a	• • •	_	a

• FD2' (augmentation):

Introduction

FD discovery

Overview of methods

Naive methods

TANF

Approximate FD discovery

Ci D discovery

Order dependencies

DC discovery

Error Detection and Data Quality Rule Discovery

FD discovery

Overview of methods

Naive methods

TANE

Approximate FD discovery

CFD discovery

Order dependencies

DC discovery

Conclusion

• FD1' (reflexivity): If $A \in X$, then $\varphi = (R : X \to A, t_p)$

X_1	 A	•••	X_k	A
	 a	• • •	1	a

• FD2' (augmentation):

$$(R:[X_1,\ldots,X_k]\to[A],t_p)$$

X_1	 X_k	A
$t_p[X_1]$	 $t_p[X_k]$	$t_p[A]$

Error Detection and Data Quality Rule Discovery

• FD1' (reflexivity): If $A \in X$, then $\varphi = (R : X \to A, t_p)$

X_1	 A	•••	X_k	A
_	 a	• • •	_	\overline{a}

• FD2' (augmentation):

$$(R:[X_1,\ldots,X_k,\mathbf{B}]\to[A],t_p')$$

X_1	 X_k	B	A
$t_p[X_1]$	 $t_p[X_k]$	_	$t_p[A]$

Introduction

FD discovery

Overview of methods

Naive methods

TANF

Approximate FD discovery

CFD discovery

Order dependencies

DC discovery

Axioms for CFDs: Transitivity

Error Detection and Data Quality Rule Discovery

• FD3' (transitivity):

Introduction

FD discovery

Overview of methods

Naive methods

TANE

Approximate FD discovery

FD discovery

Order dependencies

DC discovery

• FD3' (transitivity):

$$(R:[X_1,\ldots,X_k]\to[Y_1,\ldots Y_\ell],t_p)$$

X_1	 X_k	Y_1		Y_ℓ
$t_p[X_1]$	 $t_p[X_k]$	$t_p[Y_1]$	• • •	$t_p[Y_\ell]$

$$(R:[Y_1,\ldots,Y_\ell]\to[Z_1,\ldots Z_m],t_p')$$

Y_1	 Y_ℓ	Z_1		Z_m
$t_p'[Y_1]$	 $t_p'[Y_\ell]$	$t_p'[Z_1]$	• • •	$t_p'[Z_m]$

Introduction

FD discovery

Overview of methods

Naive methods

TANE

Approximate FD discovery

CFD discovery

Order dependencies

DC discovery
Conclusion

FD3' (transitivity):

$$(R:[X_1,\ldots,X_k]\to[Y_1,\ldots Y_\ell],t_p)$$

X_1	 X_k	Y_1		Y_ℓ
$t_p[X_1]$	 $t_p[X_k]$	$t_p[Y_1]$	• • •	$t_p[Y_\ell]$

$$(R:[Y_1,\ldots,Y_\ell]\to[Z_1,\ldots Z_m],t_0')$$

Y_1	 Y_{ℓ}	Z_1	 Z_m
$t_p'[Y_1]$	 $t_p'[Y_\ell]$	$t_p'[Z_1]$	 $t_p'[Z_m]$

Introduction

FD discovery

Overview of methods

Naive methods

TANE

Approximate FD discovery

CFD discovery

Order dependencies

DC discovery

Axioms for CFDs: Transitivity

FD3' (transitivity):

$$(R:[X_1,\ldots,X_k]\to[Y_1,\ldots Y_\ell],t_p)$$

$$\begin{array}{|c|c|c|c|c|c|c|c|c|c|}\hline X_1 & \cdots & X_k & Y_1 & \cdots & Y_\ell \\\hline t_p[X_1] & \cdots & t_p[X_k] & t_p[Y_1] & \cdots & t_p[Y_\ell] \\\hline \end{array}$$

$$(R:[Y_1,\ldots,Y_\ell]\to[Z_1,\ldots,Z_m],t_0')$$

$$(R:[X_1,\ldots,X_k]\to[Z_1,\ldots Z_m],t_p'')$$

X_1	 X_k	Z_1		Z_m
$t_p[X_1]$	 $t_p[X_k]$	$t_p'[Z_1]$	• • •	$t_p'[Z_m]$

Introduction

FD discovery

Overview of methods

Naive methods

TANE

Approximate FD discovery

CFD discovery

Order dependencies

DC discovery Conclusion

Error Detection and Data Quality Rule

• FD4' (reduction):

$$(R:[X_1,\ldots,X_i,\ldots,X_k]\to A,t_p)$$

X_1	 X_i	 X_k	A
$t_p[X_1]$	 -	 $t_p[X_k]$	a

Introduction

FD discovery

Overview of methods Naive methods TANE

Approximate FD discovery

CFD discovery

Order dependencies

DC discovery

Conclusion

[Discovering Conditional Functional Dependencies, W. Fan, F. Geerts, L. Jianzhong, M. Xiong, TKDE, 2010.]

Axioms for CFDs: Reduction, upgrade

Error Detection and Data Quality Rule Discovery

• FD4' (reduction):

$$(R: [X_1, \dots, \mathbf{X}_i, \dots, X_k] \to A, t_p)$$

X_1	 X/	 X_k	A
$t_p[X_1]$	 /-\	 $t_p[X_k]$	a

Introduction

FD discovery

Overview of methods Naive methods TANE

Approximate FD discovery

CFD discovery

Order dependencies

DC discovery

Conclusion

[Discovering Conditional Functional Dependencies, W. Fan, F. Geerts, L. Jianzhong, M. Xiong, TKDE, 2010.]

Axioms for CFDs: Reduction, upgrade

Error Detection and Data Quality Rule Discovery

• FD4' (reduction):

• FD5' (finite domain upgrade): suppose that the only consistent values for X_i are b_1, b_2, \ldots, b_n and

Introduction

FD discovery

Overview of methods

Naive methods

TANE

discovery

LFD discovery

Order dependencies

DC discovery
Conclusion

Error Detection and Data Quality Rule Discovery

• FD4' (reduction):

$$(R: [X_1, \dots, \mathbf{X}_i, \dots, X_k] \to A, t_p)$$

X_1	 X/	 X_k	A
$t_p[X_1]$	 /-\	 $t_p[X_k]$	a

• FD5' (finite domain upgrade): suppose that the only consistent values for X_i are b_1, b_2, \ldots, b_n and $(R: [X_1, \ldots, X_i, \ldots, X_k] \to A, t_p)$

X_1	 X_i	 X_k	A
$t_p[X_1]$	 b_1	 $t_p[X_k]$	$t_p[A]$
$t_p[X_1]$	 b_2	 $t_p[X_k]$	$t_p[A]$
$t_p[X_1]$	 • • •	 $t_p[X_k]$	$t_p[A]$
$t_p[X_1]$	 b_n	 $t_p[X_k]$	$t_p[A]$

[Discovering Conditional Functional Dependencies, W. Fan, F. Geerts, L. Jianzhong, M. Xiong, TKDE, 2010.]

Introduction

FD discovery

Overview of methods

Naive methods

TANF

Approximate FD discovery

CFD discover

Order dependencies

DC discovery

Error Detection and Data Quality Rule Discovery

• FD4' (reduction):

$$(R: [X_1, \ldots, X_i, \ldots, X_k] \to A, t_p)$$

X_1	 X/	 X_k	A
$t_p[X_1]$	 /-\	 $t_p[X_k]$	a

• FD5' (finite domain upgrade): suppose that the only consistent values for X_i are b_1, b_2, \ldots, b_n and $(R: [X_1, \ldots, X_i, \ldots, X_k] \rightarrow A, t_p)$

X_1	 X_i	 X_k	A
$t_p[X_1]$	 -	 $t_p[X_k]$	$t_p[A]$

Introduction

FD discovery

Overview of methods

Naive methods

TANE

Approximate FD liscovery

LFD discovery

Order dependencies

DC discovery

Conclusion

[Discovering Conditional Functional Dependencies, W. Fan, F. Geerts, L. Jianzhong, M. Xiong, TKDE, 2010.]

Introduction

FD discovery

Overview of methods

Naive methods

TANE

Approximate FD discovery

CFD discovery

Order dependencies

DC discovery

Conclusion

The tableau generation problem

Given global support S and global confidence C, an FD $R(X \to Y)$ on a relation schema R with instance \mathcal{D} :

• Find a pattern tableau T_p of smallest size such that the CFD $R(X \to Y, T_p)$ is S-frequent and C-confident.

Example: Given [name, type, country] \rightarrow [price, tax]

tid	name	type	country	price	tax
1	Harry Potter	book	France	10	0
2	Harry Potter	book	France	10	0
3	Harry Potter	book	France	10	0.05
4	The Lord of the Rings	book	France	25	0
5	The Lord of the Rings	book	France	25	0
6	Algorithms	book	USA	30	0.04
7	Algorithms	book	USA	40	0.04
8	Armani suit	clothing	UK	500	0.05
9	Armani suit	clothing	UK	500	0.05
10	Armani slacks	clothing	UK	250	0
11	Armani slacks	clothing	UK	250	0
12	Prada shoes	clothing	USA	200	0.05
13	Prada shoes	clothing	USA	200	0.05
14	Prada shoes	clothing	France	500	0.05
15	Spiderman	DVD	UK	19	0
16	Star Wars	DVD	UK	29	0
17	Star Wars	DVD	UK	25	0
18	Terminator	DVD	France	25	0.08
19	Terminator	DVD	France	25	0
20	Terminator	DVD	France	20	0

Error Detection and Data Quality Rule

Introduction

FD discovery

Overview of methods Naive methods TANE

Approximate FD discovery

CFD discovery

Order dependencies

DC discovery
Conclusion

For FD [name, type, country] \rightarrow [price, tax]

tableau with best coverage and support:

name	type	country	price	tax
_	clothing book	_ France	_	_
_	DOOK	UK	_	

[On Generating Near-Optimal Tableaux for Conditional Functional Dependencies, Golab et al, VLDB 2008.]

Introduction

FD discovery

Overview of methods

Naive methods

TANE

Approximate FD discovery

CFD discovery

Order dependencies

DC discovery

	I	1 .			
tid	name	type	country	price	tax
1	Harry Potter	book	France	10	0
2	Harry Potter	book	France	10	0
3	Harry Potter	book	France	10	0.05
4	The Lord of the Rings	book	France	25	0
5	The Lord of the Rings	book	France	25	0
6	Algorithms	book	USA	30	0.04
7	Algorithms	book	USA	40	0.04
8	Armani suit	clothing	UK	500	0.05
9	Armani suit	clothing	UK	500	0.05
10	Armani slacks	clothing	UK	250	0
11	Armani slacks	clothing	UK	250	0
12	Prada shoes	clothing	USA	200	0.05
13	Prada shoes	clothing	USA	200	0.05
14	Prada shoes	clothing	France	500	0.05
15	Spiderman	DVD	UK	19	0
16	Star Wars	DVD	UK	29	0
17	Star Wars	DVD	UK	25	0
18	Terminator	DVD	France	25	0.08
19	Terminator	DVD	France	25	0
20	Terminator	DVD	France	20	0

Introduction

FD discovery

Overview of methods

Naive methods

Approximate FD discovery

TANE

CFD discovery

Order dependencies

DC discovery

Error Detection and Data Quality Rule

Introduction

FD discovery Overview of methods Naive methods TANE

Approximate FD discovery

CFD discovery

DC discovery

Conclusion

A brief word on the discovery of order dependencies

A typical salary situation

Records for Employees:

	Name	Job	Years	Salary	
I	Mark	Senior Programmer	15	35K	
	Edith	Junior Programmer	7	22K	
	Josh	Senior Programmer	11	50K	ı
	Ann	Junior Programmer	6	38K	l

Example order dependency:

"The salary of an employee is greater than other employees who have junior job titles, or the same job title but less experience in the company." Introduction

FD discovery

Overview of methods

Naive methods

TANE

Approximate FD discovery

CFD discovery

Order dependencies

DC discovery Conclusion List-based lattice approach [Discovering Order Dependencies, Langer, Naumann, VLDB 2015]

• Apriori-like, but order matters: $XY \rightarrow A$ is different from $YX \rightarrow A$

- Set-based lattice approach [Effective and Complete Discovery of Order Dependencies via Set-based Axiomatization, Szlichta, Godfrey, Golab, Kargar, Srivastava, VLDB 2017]
 - Rewrite ODs using a set-based canonical form

Both approaches use new pruning rules based on OD semantics/axioms.

Introduction

FD discovery

Overview of methods

Naive methods

TANE

discovery
CFD discovery

CFD discovery

order dependencies

DC discovery
Conclusion

Error Detection and Data Quality Rule Discovery

Introduction

FD discovery

Overview of methods

Naive methods

TANE

Approximate FD discovery

CFD discovery

Order dependencies

Conclusion

We next turn our attention to denial constraints

FASTDC Algorithm finds all minimal valid DCs by finding minimal covers [Chu et al, VLDB 2013]

Example

"Two people living in the same state should have correct tax rates depending on their income"

$$\label{eq:special} \begin{split} \forall s,t \in \mathcal{D} \neg \big(s[\mathsf{AC}] = t[\mathsf{AC}] \land s[\mathsf{SAL}] < t[\mathsf{SAL}] \\ & \land s[\mathsf{TR}] > t[\mathsf{TR}]\big) \end{split}$$

FASTDC algorithm first computes **predicate space**.

Introduction

FD discovery Overview of methods Naive methods TANE

Approximate FD CFD discovery

Order dependencies

Conclusion

discovery

Example

Space of predicates \mathcal{P} :

				$P_1: t_i.A = t_j.A$	$P_2 = t_i.A \neq t_j.A$
tuple id	Α	В	C	$P_3: t_i.B = t_j.B$	$P_4 = t_i.B \neq t_j.B$
1	a_1	a_1	50	$P_{11}:t_i.A=t_i.B$	$P_{12} = t_i.A \neq t_i.B$
2	a_2	a_1	40	$P_{21}:t_i.A=t_j.B$	$P_{22} = t_i.A \neq t_j.B$
3	a ₃	a_1	40	$P_5: t_i.C = t_j.C$	$P_{12} = t_i.A \neq t_i.B$ $P_{22} = t_i.A \neq t_j.B$ $P_6 = t_i.C \neq t_j.C$
		ı	ı	$P_6: t_i.C > t_j.C$	$P_8 = t_i.C \ge t_j.C$
				$P_9 : t_i . C < t_i . C$	$P_10 = t_i.A \leq t_i.B$

Any combination of these predicates may be a valid DC.

Introduction

FD discovery

Overview of methods

Naive methods

TANF

Approximate FD discovery

CFD discovery

Order dependencies

Coverage

```
\neg (P_i \land P_i \land P_k) is a valid DC on D
For every pairs of tuples in I, P_i, P_i and P_k cannot be all true
For every pairs of tuples in I, at least one of P_i, P_i and P_k if false
For every pairs of tuples in I, at least one of \neg P_i, \neg P_i and \neg P_k is true
1
\neg P_i, \neg P_i and \neg P_k covers the set of true predicates
```

(evidence) for every tuple pair

Theorem

 $\neg (P_1 \land \cdots \land P_k)$ is a minimal valid DC if and only if $\{P_1, \dots, P_k\}$ is a **minimal set cover** for all evidence sets. (Coverage means intersection). Minimality is wrt set containment.

Introduction

FD discovery

Overview of methods Naive methods TANE

discovery

CFD discovery

Function: FastDC (\mathcal{D})

return Set Σ of all valid denial constraints on \mathcal{D} .

$$_{3}$$
 $P \leftarrow$ build the predicate space for \mathcal{D}

$$_{4}$$
 $\mathcal{E}\leftarrow$ build the evidence sets based on P and \mathcal{D}

for minimal cover
$$C$$
 of E do
$$\sum := \Sigma \cup \{\neg \bar{C}\}$$

Example

Evidence sets \mathcal{E} : tuple id Α В

 $\Rightarrow P_2$ covers the set of true predicates minimally.

Hence, $\neg(\neg P_2) = \neg P_1$ is a valid minimal DC.

 $\Rightarrow P_{10}, P_{14}$ covers the set of true predicates minimally.

Hence, $\neg(\neg P_{10} \land \neq P_{14})$ is a valid minimal DC

Introduction

FD discovery

Overview of methods Naive methods

TANE Approximate FD

discovery CFD discovery

Order dependencies

Implication problem

- Most algorithm rely in some or other way on the axiomatization of implication of constraints
- Old classical problem, but needs revisiting for data quality constraints

Pruning

- Data mining learns us that in order to explore large spaces to find patterns (rules), pruning is required.
- All discovery algorithm rely on pruning methods based on implied constraints or thresholds for support, confidence (or other measures).

Open problems

- Many of the constraint formalisms do not have discovery algorithms yet
- For those who have, benchmarking is needed, to understand how they can be made more efficient.

Introduction

FD discovery

Overview of methods

Naive methods

TANE

pproximate FD scovery

CFD discovery

Order dependencies

DC discovery