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Error Detection and

Detecting errors Data Quality Rule
Discoven
We have seen many different types of data quality dependencies. y

. N . . Introduction
In the constraint-based data quality “paradigm F;OI_"CtO
“Errors are violations of the constraints” cvenview ofmethes

Naive methods
TANE

. R Approximate FD
When constraints are given discovery

Checking for violations (=errors) is a matter of implementing e

“easy” checks on top of a DBMS.

Order dependencies
DC discovery

Conclusion

There has been work on detecting violations by means of SQL
queries.

Nevertheless, largely unexplored area of research.

® |Increased efficiency by using specialised indexes?

® [ncremental maintenance (violations are continuously
monitored)?

® Distributed violation checking (when data is partitioned)?



Detecting errors

Most work, however, relates to discovering the constraints,
which can then be used to detect the errors.

We focus on the discovery task ...
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Where do data quality constraints/dependencies come from?
® Manual design (expensive and time consuming).

® Business rules (not expressive enough).

Dependency discovery: Idea

Given a sample of the data, find data quality dependencies that
hold on the sample.

Discovery
Data quality
—_— ;
dependencies

Inspiration from data mining algorithms:

Data mining techniques have been successfully applied to

discover some of the data quality rules that we have seen earlier.

There already many different algorithms for a variety of
dependencies!
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Existing discovery algorithms (partial list)

FDs

FDs
CFDs
CFDs
CFDs

DDs
INDs

INDS

CINDs

DCs
eRs
MDs

TANE: An Efficient Algorithm for Discovering Functional and Approximate Dependencies, Y. Huhtala, J.
Karkkainen, P. Porkka, H. Toivonen, Computer Journal, 1999.

DFD: Efficient Functional Dependency Discovery, Z. Abedjan, P. Schulze, F. Naumann, CIKM 2014.
Discovering Conditional Functional Dependencies, W. Fan, F. Geerts, L. Jianzhong, M. Xiong, TKDE, 2010.
Discovering Data Quality Rules, F. Chiang, R. Miller,VLDB, 2008.

Estimating the confidence of conditional functional dependencies, G. Cormode, L. Golab, F. Korn, A. McGregor,
D. Srivastava, X. Zhang, SIGMOD 2009.

Differential dependencies: Reasoning and discovery, S. Song, L. Chen, TODS, 2011

Unary and n-ary inclusion dependency discovery in relational databases. F. De Marchi, S. Lopes, and J.-M. Petit.,

JIIS 2009.

Divide & conquer-based inclusion dependency discovery. T. Papenbrock, S. Kruse, J.-A. Quiané-Ruiz, and F.
Naumann. VLDB, 2015.

Discovering conditional inclusion dependencies, J. Bauckmann Z. Abedjan, U. Leser, H. Miiller, F. Naumann,
CIKM 2012.

Discovering denial constraints, X. Chu, I. llyas, P. Papotti, VLDB, 2013.
Discovering editing rules for data cleaning. T. Diallo, J.-M. Petit, and S. Servigne. AQB, 2012.
Discovering matching dependencies, S. Song and L. Chen. CIKM, 2009.
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Discovery algorithms

Discovery algorithms can be roughly classified as:

® Schema Driven

® Usually sensitive to the size of the schema.

® Good for long thin tables!
® |pnstance Driven

® Usually sensitive to the size of the data.
® Good for fat short tables!

® Hybrid
® Try to get the best of both worlds...
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We start by looking at Functional Dependency (FD) discovery.
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Discovering functional dependencies

Problem Statement

Input: Database instance D over schema R.

Output: Set X of all FDs ¢ = R(X — Y) that hold on D, i.e.,
such that D E o.

Uses
Schema design Data cleaning
Key discovery Anomaly detection

Query optimization Index selection
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A first observation: Not all FDs are interesting

® Trivial: Attributes in RHS ! are a subset of attributes on
LHS.
® R([Street, City] — [City])
® Any trivial FD holds on a dataset.

® Non-trivial: At least one attribute in RHS does not appear
on LHS.

® R([Street, City] — [Zip. City])
® Completely non-trivial: Attributes in LHS and RHS are
disjoint.
® R([Street, City] — [Zip])

When discovering FDs...

Only interested in completely non-trivial functional
dependencies.

1RHS=right hand side; LHS=left hand side
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Further observations...

Logical implication

® |t suffices to only discover a minimal set of FDs from the

data, from which all other FDs that hold can be derived...

= Finding out when FDs can be derived from other FDs is
known as an implication problem
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Error Detection and

General implication problem Data Quality Rule

Discovery

The implication problem Introduction

. FD discovery
To determine,

Overview of methods

Naive methods

® given a schema R, a set X of constraints and a single TaNE
constraint ¢ defined on R, Approximate FD
® whether or not X implies ¢, denoted by ¥ |= ¢. CFD discovery
Order dependencies
DC discovery

That is, whether for any instance D of R that satisfies ¥, D also
satisfies ¢ (D = o).

Conclusion

Redundancy

To remove redundant data quality rules. Indeed, ¢ € ¥ can be
removed if (X \ {¢}) E .

For FDs, this is easy to check.



Finite axiomatizability of FDs

Armstrong’s axioms for FDs 2:

Reflexivity : If YCX, then X =Y
Augmentation : If X = Y, then XZ — YZ
Transitivity : IfX—=Yand Y —Z then X - Z

Sound and complete: ¥ = ¢ iff ¢ can be inferred from T using
the axioms.

Example
Relation R ={A B,C,G,H, I}

FDsY ={A—=B,A— C,CG — HCG — |, B — H}.
Show:

® YA H Why?
® Y = CG — HI. Why?

2We use X — Y to denote FD R(X — Y)
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Finite axiomatizability of FDs

Armstrong’s axioms for FDs 2:

Reflexivity : If YCX, then X =Y
Augmentation : If X = Y, then XZ — YZ
Transitivity : IfX—=Yand Y —Z then X - Z

Sound and complete: ¥ = ¢ iff ¢ can be inferred from T using
the axioms.

Example
Relation R ={A B,C,G,H, I}

FDsY ={A—=B,A— C,CG — HCG — |, B — H}.
Show:

® > A— H Why? A— B, B— H, transitivity, A — H.
® > = CG — HI. Why?

2We use X — Y to denote FD R(X — Y)
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Finite axiomatizability of FDs

Armstrong’s axioms for FDs 2:

Reflexivity : If YCX, then X =Y
Augmentation : If X = Y, then XZ — YZ
Transitivity : IfX—=Yand Y —Z then X - Z

Sound and complete: ¥ = ¢ iff ¢ can be inferred from T using
the axioms.

Example

Relation R={A,B,C, G, H, I}
FDsY ={A—=B,A— C,CG — HCG — |, B — H}.
Show:
® > A— H Why? A— B, B— H, transitivity, A — H.

® 5> = CG — HI. Why? Augmentation of CG — [ to infer
CG — CGl, augmentation of CG — H to infer CGI — HI,
and then transitivity.

2We use X — Y to denote FD R(X — Y)
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Recall, we want to pinpoint precisely which FDs are sufficient to
discover.

= They must form a minimal cover
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Cover of FDs

Minimal Cover
Given a set ¥ of FDs, a minimal cover of ¥ is a set ¥’ of FDs

® such that X and Y’ are equivalent, i.e., ~ = ¢ for all
o' €Y and ¥’ E o for all ¢ € T; and

® no proper subset of ¥’ has the previous property (it is
minimal); and

® removing any attribute from a LHS of an FD in ¥’ destroys
equivalence (non-redundancy)

Discovery algorithms should preferably return a cover of all FDs
that hold on a given instance!

Error Detection and
Data Quality Rule
Discovery

Introduction

FD discovery
Overview of methods
Naive methods
TANE

Approximate FD
discovery

CFD discovery
Order dependencies
DC discovery

Conclusion



Error Detection and

Discovering covers Data Quality Rule

Discovery

Introduction

FD discovery
Overview of methods

Naive methods
Algorithmically, you can either TANE

Approximate FD
discovery

@ Post-process discovered FDs to obtain a cover

CFD discovery

® This can be done using Armstrong’s axioms St s
DC discovery
Conclusion

® Interleave redundancy checks during discovery process
® Most algorithms follow this approach



Discovering functional dependencies

A lot of different algorithms:

® Schema-driven:

® TANE [Huhtala et al, Computer Journal 1999]

® FUN [Novelli et al., 2001]

® FDMing[Yao et al., 2002]

® DepMiner[Lopez et al., 2000]
® [nstance-driven: FASTFD [Wyss et al, DaWaK, 2001]
® Hybrid:

® FDEP [Flach et al.,1999]

® DFD [Abedjan et al. 2015]
e .
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Overview FD discovery

® Describe some naive methods
® Describe TANE algorithm in detail

® Mention other methods
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1

2

3

Naive FD discovery algorithm

Naive Algorithm
Function: find_FDs (D)

return All valid FDs ¢ such that D = ¢.

for each attribute A in R do
for each X C R\ {A} do
for each pair (t1, t2) € D do
if tl[X] = tz[X] &
t1[A] # t2[A] then
L break

return X — A

Don’t use this algorithm!

Complexity: For each of
the |R| possibilities for
RHS:

® check 2/RI-1
combinations for

LHS

® scan the db |D|?/2
times for each

combination.

Very inefficient! No pruning of trivial or inferred FDs.
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1

2

1

2

Slightly less naive FD discovery algorithm

Less Naive Algorithm

Function:

all_count (D)
return Store count(D, X) for all X C R.

Function:

return All valid FDs ¢ such that D = ¢.

find_FD (D)

for each attribute A in R do
for each X C R\ {A} do

if

count(D, X)=count(D, X U A)

then

| return X — A

Also don’t use this algorithm!

Complexity:

® Precompute
SELECT
COUNT (DISTINCT
X) FROM R for
each X C R.

® For each of the |R)|
possibilities for
RHS: check 2/RI-1

combinations for
LHS.

Database scans are factored out of the loop, but still inefficient!
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TANE

TANE algorithm improves on these naive methods.

Idea behind the approach:

® Reduce column combinations through pruning
® Modelling of search space as lattice
® Reasoning over FDs

® Reduce tuple sets through partitioning

® Partition data according to attribute values
® |evel-wise increase of size of attribute set
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Error Detection and

Search space modelling Data Quality Rule

Discovery

® Model search space as power set lattice.

Power set lattice
Introduction
FD discovery

Overview of methods

® Elements in lattice: subsets of attributes in R;

® Partial order: X C Y; tove s
® Join of two elements X and Y is XU Y P
® Meet of two elements X and Y is XN Y. CFD discovery

Order dependencies
DC discovery

Conclusion




Lattice traversal

The lattice structure brings some order in the exploration space.

Bottom up traversal through lattice

® only minimal dependencies
® always tests for X \ A — Afor Ae X
® Pruning

® Re-use results from previous level

Main idea:

For each visited element X in the lattice
= maintain a set of candidate RHS.
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RHS Candidate sets

RHS Candidate set C(X)

® When considering X, it stores only those attributes that
might depend on all other attributes of X.
® |.e., those that still need to be checked
® |f Ae C(X) then A does not depend on any proper

subset of X, i.e.,

C(X)=R\{AeX|DEX\A— A}

Let R = {ABCD} and suppose that D = A — C and

D = CD — B. Then,

® C(A)=ABCD\ {} = C(B) = C(C)

®C
L
®C
®C

AB) = ABCD \ {}

AC) = ABCD \ {C} = ABD
CD) = ABCD\ {}

BCD) = ABCD \ {B} = ACD

—~ —~ —~
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Error Detection and

RHS Candidate pruning Data Quality Rule

Discovery

Minimality Check
For minimality it suffices to consider X \ A — A where
® Ac X and AeC(X\{B}) forall B € X.

® |e., Aisin all candidate sets of the subsets. R

TANE

Introduction

FD discovery

Approximate FD
discovery

Let X = {ABC}. Assume we know C — A from previous step.

CFD discovery

® Need to test three dependencies: AB — C, AC — B, and O et
BC — A. We should not be testing BC — A, because we know DC discovery
C— A Conclusion

® (Candidate sets of subsets of ABC:
® C(AB) = ABC,C(AC) S BC,C(BC) = ABC

® FE g, BC — A does not need to be tested for minimality, because
A is not in all three candidate sets:

A& C(AB) NC(AC)NC(BC) = {BC}.

® AB — C, AC — B need to be tested, because B and C appear in
all candidate sets.



- - E D i d
RHS Candidate pruning Data Guality Rule
Discovery
Final pruning step

Introduction

® If C(X)={} then C(Y) = {} forall Y D X. FOldicover
® |.e, prune all supersets
® No Y\ {A} — A can be minimal and Y can be ignored.
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- - E D i d
RHS Candidate pruning Data Guality Rule
Discovery
Final pruning step

Introduction

® If C(X)={} then C(Y) = {} forall Y D X. FOldicover
® |.e, prune all supersets
® No Y\ {A} — A can be minimal and Y can be ignored.

Overview of methods
Naive methods
TANE

Approximate FD

discover y
CFD discover y
Order depend
DC discovery




Improved RHS candidate pruning
Using implication rules

Let B € X and let X\ B — B hold. Then,
X — Aimplies X \ B — A.

® E.g., A— B holds. Then AB — C implies A — C.
Use this to reduce candidate set:

® |f X\ B — B for some B, then any dependency with all of
X on LHS cannot be minimal.

® Just remove B.

Revised C(X): C"(X)
Define

Ct(X)={Ae R |forall Be X,
X\ {A B} — B does not hold}

Special case: A= B, CT(X) = C(X).
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Error Detection and

Improved RHS candidate pruning Data Quality Rule

Discovery

Introduction

FD discovery
Overview of methods

Naive methods

The definition CT(X) removes three types of candidates: [t £
® C;={Ae X |X\A— Aholds} (as before) CFD discovery
® C, = {R\ X |if there exists a B € X such that X \ B — B zcddd';
hO|dS} Conclusion

® (3 ={A € X|if there exists B € X \ A such that
X\ {A B} — B holds }



Example of C5:

Recall

Ct(X)={Ae€ R |forall Be X, X\ {A, B} — B does not hold}

and
Co = {R\X | if there exists a B € X such that X \ B — B holds.}

Consider R = {ABCD}, X = {ABC}. Assume C*(X) = ABCD
initially.

® Discovery of C — B

® Remove B from C*(X)

® Additionally remove R\ X = D.

Ok, because remaining combination of LHS contains B and C
and ABC — D is not minimal because C — B.
Together: CT(ABC) = {ABCD} \ {BD} = {AC}.
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Example of Cs:

Recall

Ct(X)={Ae€ R |forall Be X, X\ {A, B} — B does not hold}

and

Cs = {A € X | if there exists B € X \ A such that
X\ {A B} — B holds

Same idea as before, but for subsets. Assume Y C X such that
Y \ B — B holds for some B € Y. Then we can remove from
CT(X)all Ae X\ Y.

Consider X = ABCD and let C — B. We have BC =Y C X
and X\ Y = AD.

® Thus can remove all AD.

Ok, any remaining combination of LHS contains B and C. Hence
ABC — D and BCD — A. Again, since C — B any such FD is
not minimal.

Together: CT(X) = C.
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- Error Detection and
Key pruning Data Quality Rule

Discovery

Introduction

Insight FD discovery

Overview of methods

Naive methods

If X is superkey and X \ B — B, then X \ B is also a superkey. e

Approximate FD
discovery

® If X is superkey, no need to test any X — A.

CFD discovery
® If X is superkey and not key, any X — A is not minimal (for Order dependencies
any A g X) DC discovery

® If X is superkey and not key, if A€ X and X \ A — A then R
X\ A is superkey, and no need to test.

Can prune all keys and their supersets



TANE Base algorithm

N

TANE

Function: tane(D)

return All valid minimal FDs ¢ such that D = .

Lo = @

cHo) =R

L :={A|AeR}

{=1

while L, # () do
compute_dependencies (L)
prune (L,)
Lyy1:=generate_next_level(L,)
£:=0+1
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TANE: Generating lattice levels
TANE
Function: generate_next_level(Ly)
return Generate candidate X C, [X|=£+1

Le+1 Z:@
for K € prefix_blocks(L,) do
for Y, ZCK, Y # Zdo
X:=YUZ
if for all Ae X, X\ A € L, then
L Lepri=Lepn UX

return Lgqq

Explanation

® [,.1 consists of all X of size £+ 1 such that all Y C X are

in Lg.

® Prefix blocks: disjoint sets from L, with common prefix of

size £ — 1 (all pairs for £ =1)

® Line 5. All subsets of a new set must appear in a lower level.
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TANE: Compute dependencies

TANE

1 Function:
compute_dependencies(Ly)

> return Minimal dependencies

3 for X € L, do
s | CHX) = Naex CT(X\ A)
s for X € L, do

6 for Ac XNCH(X) do

7 if X\ A— Ais valid then

8 return X \ A — A

0 Remove A from C*(X)

10 Remove all B € R\ X
from C*(X).

Explanation

|4 Create candidate
sets; each attribute
must appear in all
candidate sets of
smaller size

|6 Only test attributes
from candidate set

|7 Actual test on data

|9 Reduce candidates by

newly found
dependency

|10 Reduce candidates by
all other attributes:
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1

2

3

4

10

TANE: Pruning

Discovery
TANE
Function: pruning(L,)
Introduction
for X € L, do FD discovery
. £ Overview of methods
If C+(X) = @ then Naive methods

TANE

| delete X from L,

if X is a (super) key then
for A€ CH(X)\ X do CrDldiscovery
7 = ﬂBeX C+(X UA \ B) Order dependencies
if A€ Z then BE dlzeancy
L return X — A

Approximate FD
discovery

Conclusion

delete X from L,

Explanation

® Line 3: Basic pruning. Deletion from L, ensures that
supersets cannot be created during level generation (loops
not executed on empty candidate sets)

® Lines 4-8: Key pruning

Error Detection and
Data Quality Rule



Error Detection and
TANE Sample run o heese

Data Quality Rule

Discovery
R = ABCD, C — B and AB — D are to be discovered (Also: et
AC — D by implication) ) clezmy
o LO = @y ::::Emethods
® C*t () = ABCD. Nothing to do PR
discovery
@ Ll = {A’ B’ C’ D} CFD discovery
® C+(X) = ABCD for all X € L Order dependencies
® Still nothing to do: No FDs can be generated from DE dlimey
Sing|etOﬂS Conclusion

® Thus, no pruning
® L, ={AB,AC,AD, BC, BD, CD}
® Fg,
CT(AB) =C*(AB\A)NCT(AB\ B) = ABCDNABCD
® Ct(X)= ABCD for all X € L.

® Dep. checks for AB: A— B and B — A Nothing
happens



TANE Sample run (cnt’d)

® L, = {AB,AC, AD, BC, BD, CD}

CH(X) = ABCD for all X € Ly

Dep. checks for BC: B — C (no!) and C — B (yes!)
Qutput C —» B

Delete B from C*(BC) = ACD

Delete R\ {BC} from CT(BC) = C

(Note BC — A and BC — D are not minimal).

o s = {ABC, ABD, ACD, BCD}

® Dep. check for ABC: ABC NCT(ABC) are candidates

CH(ABC) =CT(AB)NCT(AC)NCH(BC)=C
Ct(BCD) =CcH(BC)NnCH(BD)NCH(CD) = C
C*t(ABD) = C*(ACD) = ABCD unchanged

AB — C no! Did not check BC —+ A and AC — B
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TANE Sample run (cnt’d)

O L; ={ABC,ABD, ACD, BCD}

® CT(ABC)=C"(BCD)=C

® C*(ABD)=C*(ACD) = ABCD

® Dep. check for ABD: ABD NC*(ABD) are candidates
® AD — B and BD — A: no!
® AB — D: yes! Output AB — D
® Delete D from CT(ABD) = ABC
® Delete R\ ABD from C*(ABD) = AB

® Dep. check for BCD: BCD NC*T(BCD) are candidates
® Only need to check BD — C: no!

® Dep. check for ACD: ACD NC*(ACD) are candidates
® CD — Aand AD — C: no!
® AC — D: yes! Output AC — D
® Delete D from CT(ABD) = ABC
® Delete R\ ACD from C*(ABD) = AC
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TANE Sample run (cnt'd)

® L, =ABCD

C*T(ABCD) =
CT(ABC)NCT(ABD)NCT(ACD)NCT(BCD) = {}
Nothing to check

Did not need to check

BCD — A: Not minimal because C — B

ACD — B: Not minimal because C — B

ABD — C: Not minimal because AB — D

ABC — D: Not minimal because AC — D.

@ Done.
@ Ouput: C - B, AB— D, AC — D.
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Dependency checking

X-equivalence

Tuples s and t are X-equivalent wrt attribute set X if
t[A] = s[A] for all A e X.

X-Partitioning
Attribute set X partitions D into equivalence classes:
[t]lx ={s € D | VA € X, s[A] = t[A]}.

Clearly,
D= [tl]xO[tQ]Xo"'U[tk]x.

for some tq, ..., tx. We denote the set of parts by mx.
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tupleid | A | B | C | D TANE
1 a | b|ald [La=[2a={12} i 6
2 a b2 () d3 TA = {{1, 2}, {3, 4, 5}, CFD discovery
3 a | by | ¢ | da (6,7,8}} Order dependencies
4 ar b2 C1 dl DC discovery
5 do b3 C3 d5 UEe = {{1}' {2}' {3r 4}v {5}, Conclusion
6 as b3 C1 d@ {6}1 {7}' {8}}
7 as | by | 4 | dh mp = {{1,4,7} {2}, {3}, {5},
8 e bl e {6}, {8}}



Partition refinement

Partition 7 refines partition 7’ if every equivalence class in 7 is
a subset of some equivalence class in 7’.

® X — Aif and only if mx refines mp.
® 7x refines wa if and only if |7Tx| = |7Txal
® Why?

Error Detection and
Data Quality Rule
Discovery

Introduction

FD discovery
Overview of methods
Naive methods
TANE

Approximate FD
discovery

CFD discovery
Order dependencies
DC discovery

Conclusion



Partition refinement

Partition 7 refines partition 7’ if every equivalence class in 7 is
a subset of some equivalence class in 7’.

® X — Aif and only if mx refines mp.
® 7x refines my if and only if |7Tx| = |Txal
® Why?
® |f mx refines T4 then Tax = Tx
® x4 always refines ma.
® = If mxa # Ta then |mx| # |Txal
® = if |7Tx‘ = |7TXA| then mxa = mx .
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Partition refinement

Partition 7 refines partition 7’ if every equivalence class in 7 is
a subset of some equivalence class in 7’.

® X — Aif and only if mx refines mp.
® 7x refines my if and only if |7Tx| = |Txal
® Why?
® |f mx refines T4 then Tax = Tx
® x4 always refines ma.
® = If mxa # Ta then |mx| # |Txal
® = if |7Tx‘ = |7TXA| then mxa = mx .

Testing validity of FDs:
We have that D = X — A if and only if |7mx| = |mxal.
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Partition refinement

Testing validity of FDs:

We have that D = X — A if and only if |mx| = |mxal.

Example
tupleid | A | B
1 ai b1
2 dai b1
3 an b1
4 an b1
5 dap bl
6 as bz
7 as b2
8 as b2

Hence, |mag| = |ma| and A — B. Note, |mag| > |7g| and B — A

does not hold.

ma={{1,2},{3,4,5},{6,7,8},
7 = {{1,2.3,4,5}, {6,7,8}}
mag = {{1,2},{3,4,5},{6,7,8}}
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Striped partitions

Idea: Optimization

Remove equivalence classes of size 1 from partitions.

ma={{1,23,4,5}{6,7} {8}}

= {{1,2,3,4,5},{6,7}}
mag = {{1}, {2} {3.4}. {5}, {6, 7} {8}}
s = {{3.4}, {6, 7}}

Why?
Issue with striped partitions
tupleid | A | B
1 ai b1
2 ai b2
3 ai b3
4 dai b3
5 dai b4
6 dan b5
7 an b5
8 as b@

Observe |myg| = || yet A — B does not hold.
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Striped partitions

Idea: Optimization

Remove equivalence classes of size 1 from partitions.

Why? Singleton equivalence class cannot violate any FD.

Issue with striped partitions

tupleid | A | B
1 ai b1
2 ai b2
3 dai b3
4 dai b3
5 ai b4
6 dan b5
7 an b5
8 as b@

ma={{1,23,4,5} {6,7} {8}}

= {{1,2,3,4,5},{6,7}}
mag = {{1}, {2} {3.4}. {5}, {6, 7} {8}}
s = {{3.4},{6.7}}

Observe |myg| = || yet A — B does not hold.
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Striped partitions

Error functions

For striped partitions define

[l — |k
X) =122 = Xl
(X) D]

where ||| is the sum of sizes of elements in 7.
Then, X — A if and only if e(X) = e(XA).

Example

= {{1,2,3,4,5},{6,7}}

Imall =7
map = {{3.4}.{6.7}}
[Tagll = 4

e(A) = (7—2)/8 =5/8
e(AB) =4—2/8 =2/8.

Hence, e(A) # e(AB) and A — B does not hold.
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Where are the partitions used?

1

TANE

Function:
compute_dependencies(L;)

for X € L, do
L CH(X):= MNaex CH(X\ A)
for X € L, do
for A€ XN CH(X) do
if X\ A— Ais valid then
return X \ A — A
Remove A from
CH(X)
Remove all B € R\ X
from C*(X).

Validity test

16 e(X\ A) =e(A)?

Efficient algorithms in place to compute striped partitions.
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Introduction
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Overview of methods
Naive methods

150000

Rows

Approximate FD
discovery
100000 CFD discovery
Order dependencies

50000

DC discovery

Conclusion

0 20 40 60 80 100 120
Columns

® Source: Functional Dependency Discovery: An Experimental
Evaluation of Seven Algorithms, Paperbrock et al, VLDB
2016

® https://hpi.de/naumann/projects/repeatability /data-
profiling/fds.html

a7



Approximate FD discovery

We next generalise TANE for discovering approximate FDs
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Approximate FDs

An approximate FD X — A holds on D if
err(X — A) <g,

where

min{|S|| SCD,D\'S = X — A}

err(X — A) = D] ,

i.e., minimum number of tuples to be removed from D such
that X — A holds.

TANE can be modified for approximate FDs
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Approximate FD

Example
tupleid | A | B
1 ai bl
2 ai b2
3 dai b3
4 di b3
5 di b4
6 dan b5
7 dan b5
8 as b6

tupleid | A | B
3 ai b3
4 ai b3
6 an b5
7 do b5
8 as b6

We know A — B does not hold.

Error function can be efficiently computed using striped
partitions.

err(X — A) =3/8
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approx- TANE

Function: compute_approximate_dependencies(Ly)

for X € L, do Overview of methods

L CH(X) = Naex CH(X\ A) TANE
for X € L, do
for Ae X NCT(X) do
if X\ A— Ais valid then
return X \ A — A
Remove A from C*(X)
Remove all B € R\ X from CT(X).

Line 6 is replaced by:
if err(X\ A — A) < ¢ then

Line 9 is replace by:
if X\ A — A holds exactly then
| Remove all B € R\ X from C*(X).
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| CPDdiscovery
TANE can also be generalised for discovering conditional s
. - DC di
functional dependencies. e

Conclusion



C Error Detection and
FDS Data Quality Rule

Discovery
Definition
A CFD is an FD R(X — Y') expanded with a pattern tableau
Introduction
XA FD discovery
Overview of methods
t; Naive methods
T = X TANE
¥ . Approximate FD
discovery
k
tp CFD discovery
Order dependencies
where t;, C t;,‘ are pattern tuples over X U {A}: constants, or BE ey
wildcard . Conclusion

Example CFD

@ : [CC = 44, ZIP] — [STR]

® (cust:[CC,ZIPl — [STR], T,)

CC[ZIP [ STR
44

® pattern tableau T:




CFD Satisfaction

A CFD R(X — Y, T,) is satisfied on a database D iff for any
two tuples s and t in D:

® if s[X] = t[X] < t,[X] for some t, € Tp;
® then also s[A] = t[A] < t,[A].
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CTANE

Modifications needed to TANE:

® Lattice: (X, tp)-pairs where as in TANE, X is set of
attributes, but extended with pattern tuple.

= Search space is much larger!
® Pruning: Armstrong’s axioms need to be revised
= Needed to define candidate RHS sets C* (X, t,).

® Traversal of lattice: Ensure that "most general” patterns are
considered first

= If R([AB] — C,(a, _, )) holds, we don't need
RI([AB] — C,(a, b, )).

These modifications suffice to adapt TANE for CFDs!

Most challenging are the modification to Armstrong’s axioms.
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Axioms for CFDs: Reflexivity, augmentation

® FD1' (reflexivity): If A€ X, then o =(R: X — A, tp)
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Axioms for CFDs: Reflexivity, augmentation

® FD1' (reflexivity): If A€ X, then o =(R: X — A, tp)
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A

Error Detection and
Data Quality Rule

Discovery

Introduction

FD discovery
Overview of methods
Naive methods
TANE

Approximate FD
discovery

CFD discovery
Order dependencies
DC discovery

Conclusion



Axioms for CFDs: Reflexivity, augmentation

® FD1' (reflexivity): If A€ X, then o =(R: X — A, tp)

X1

A

X

A

a

a
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Axioms for CFDs: Reflexivity, augmentation

® FD1' (reflexivity): If A€ X, then o =(R: X — A, tp)

X1

A

X

A

a

a

® FD2’ (augmentation):
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Axioms for CFDs: Reflexivity, augmentation Data Quality Rule
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Introduction

FD discovery

® FD1' (reflexivity): If A€ X, then o =(R: X — A, tp) Qvenen of methods

Naive methods

X A Xi || A
1 k Approximate FD
discovery

— o« e a st - a CFD discovery

Order dependencies

® FD2’ (augmentation): ey
(R . [Xl, ... ,Xk] — [A], tp) Conclusion

X X5 A
X | o [ 6] | Gl A




Axioms for CFDs: Reflexivity, augmentation

® FD1' (reflexivity): If A€ X, then o =(R: X — A, tp)

X1

A

X

A

a

a

® FD2’ (augmentation):

(R:[X1,..., Xy, B] — [A], 1)

X4

X

A

tp[Xl]

tp[Xk]

tp[A]
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Axioms for CFDs: Transitivity

® FD3’ (transitivity):

(RZ [Xl,...,Xk]—>[Y1,...

(RZ [Yl,..

Xy

.,ng]—>[Zl,...

Y;

Ye]atp)
Xy

Zmls ty)
Y,

Y,

Al

Yy

tp[2]

tp[Zm]
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Axioms for CFDs: Reduction, upgrade

® FD4’ (reduction):
(RZ[Xl,...,Xi,...,Xk]%A,tp)
X, |- X X, |lA
DX - || 6K

[Discovering Conditional Functional Dependencies, W. Fan, F. Geerts, L.
Jianzhong, M. Xiong, TKDE, 2010.]
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Axioms for CFDs: Reduction, upgrade Data Quality Rule

Discovery

® FD4’ (reduction):
(R : [Xl, oo ,Xi, PN ,Xk] — A, tp) Introduction

FD discovery

.. A Overview of methods
X1 ... X

Naive methods
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Approximate FD
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[Discovering Conditional Functional Dependencies, W. Fan, F. Geerts, L.
Jianzhong, M. Xiong, TKDE, 2010.]
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Axioms for CFDs: Reduction, upgrade Data Quality Rule
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® FD4’ (reduction):
(R . [Xl, e ,Xi, N ,Xk-] — A, tp) Introduction

FD discovery

.. A Overview of methods
X1 ... X

Naive methods

S alANEREEY

Approximate FD

discovery
® FD5’ (finite domain upgrade): suppose that the only CFD discovery
consistent values for X; are by, by, ..., b, and Order dependencies

DC discovery

Conclusion

[Discovering Conditional Functional Dependencies, W. Fan, F. Geerts, L.
Jianzhong, M. Xiong, TKDE, 2010.]



Axioms for CFDs: Reduction, upgrade

® FD4’ (reduction):

(RZ [Xla'--7Xia'~'7Xk] —>A,tp)

X, | N X

A

XA /N - X

a

® FD5’ (finite domain upgrade): suppose that the only

consistent values for X; are by, b, ..., b, and
(RZ [Xl,...,Xi,...,Xk] —>A,tp)
X1 e X X A
tp[X1] | ... [ ba tp[ Xk || tplA]
tp [ Xq] | ... | b2 o[ Xk || tplA
ol Xa| | o0 [ to[ Xk || tp[A
tp(Xa] | ... | bn tp[ Xk || tplA]

[Discovering Conditional Functional Dependencies, W. Fan, F. Geerts, L.

Jianzhong, M. Xiong, TKDE, 2010.]
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Axioms for CFDs: Reduction, upgrade

® FD4’ (reduction):

(RZ[Xl,...

X1

7Xia"

N

.,Xk] — A,tp)

X

A

tp[Xl]

/N

tp [Xk:]

a

® FD5’ (finite domain upgrade): suppose that the only

consistent values for X; are by, b», .
(R H [X17 e

X1

X;

s Xis o

.., b, and

,Xk] —>A,t

»)
Xk A

tp[Xl]

tp[Xi] || tp[A]

[Discovering Conditional Functional Dependencies, W. Fan, F. Geerts, L.
Jianzhong, M. Xiong, TKDE, 2010.]
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Other CFD discovery tasks

The tableau generation problem

Given global support S and global confidence C, an FD
R(X — Y) on a relation schema R with instance D:

® Find a pattern tableau T, of smallest size such that the
CFD R(X — Y, Tp) is S-frequent and C-confident.
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Example: Given [name, type, country] — [price, tax]

tid name type country | price | tax
1 Harry Potter book France 10 0
2 Harry Potter book France 10 0
3 Harry Potter book France 10 0.05
4 | The Lord of the Rings book France 25 0
5 | The Lord of the Rings book France 25 0
6 Algorithms book USA 30 0.04
7 Algorithms book USA 40 | 0.04
8 Armani suit clothing UK 500 | 0.05
9 Armani suit clothing UK 500 | 0.05
10 Armani slacks clothing UK 250 0
11 Armani slacks clothing UK 250 0
12 Prada shoes clothing USA 200 | 0.05
13 Prada shoes clothing USA 200 | 0.05
14 Prada shoes clothing | France | 500 | 0.05
15 Spiderman DVD UK 19 0
16 Star Wars DVvD UK 29 0
17 Star Wars DVvD UK 25 0
18 Terminator DVD France 25 0.08
19 Terminator DVvD France 25 0
20 Terminator DVvD France 20 0
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Optimal tableau

For FD [name, type, country] — [price, tax]
tableau with best coverage and support:

| name | type | country | price | tax |
clothing B

book France
UK

0

[On Generating Near-Optimal Tableaux for Conditional Functional
Dependencies, Golab et al, VLDB 2008.]
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Coverage of optimal tableau

name type country | price | tax
Harry Potter book France 10 0
Harry Potter book France 10 0
Harry Potter book France 10 0.05
The Lord of the Rings book France 25 0
The Lord of the Rings book France 25 0
Algorithms book USA 30 0.04
Algorithms book USA 40 | 0.04
Armani suit clothing UK 500 | 0.05
Armani suit clothing UK 500 | 0.05
Armani slacks clothing UK 250 0
Armani slacks clothing UK 250 0
Prada shoes clothing USA 200 | 0.05
Prada shoes clothing USA 200 | 0.05
Prada shoes clothing | France | 500 | 0.05
Spiderman DVD UK 19 0
Star Wars DVvD UK 29 0
Star Wars DVvD UK 25 0
Terminator DVD France 25 0.08
Terminator DVvD France 25 0
Terminator DVvD France 20 0
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Recall order dependencies

A typical salary situation

Records for Employees:

Name
Mark
Edith
Josh
Ann

Job
Senior Programmer
Junior Programmer
Senior Programmer
Junior Programmer

Example order dependency:

Years

15
7
11
6

Salary
35K
22K
50K
38K

“The salary of an employee is greater than other

employees who have junior job titles, or the same job
title but less experience in the company.”
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Discovering order dependencies

® List-based lattice approach [Discovering Order Dependencies,
Langer, Naumann, VLDB 2015]
® Apriori-like, but order matters: XY — A is different
from YX — A
® Set-based lattice approach [Effective and Complete Discovery of
Order Dependencies via Set-based Axiomatization, Szlichta, Godfrey,
Golab, Kargar, Srivastava, VLDB 2017]
® Rewrite ODs using a set-based canonical form

Both approaches use new pruning rules based on OD
semantics,/axioms.

Error Detection and
Data Quality Rule
Discovery

Introduction

FD discovery
Overview of methods
Naive methods
TANE

Approximate FD
discovery

CFD discovery
Order dependencies
DC discovery

Conclusion



We next turn our attention to denial constraints

FASTDC Algorithm finds all minimal valid DCs by finding
minimal covers [Chu et al, VLDB 2013]
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Discovery
Introduction
FD discovery
Example s
Naive methods
“Two people living in the same state should have correct TANE
tax rates depending on their income” ErTTedie

discovery

CFD discovery
Order dependencies
DC discovery

Vs, t € D(s[AC] = t[AC] A s[SAL] < t[SAL]
AS[TR] > t[TR])

Conclusion

FASTDC algorithm first computes predicate space.
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Introduction

FD discovery

Example Overview of methods

Naive methods

Space of predicates P: TANE
Pl B f,‘.A = tJA P2 = t,‘.A ;é tJA (A“:f;csxelrmate FD
tupleid | A| B | C Ps:tiB=tB P=tB#4.B i
1 a; | a1 | b0 Pu:tiA=t.B Ppn=t.A#t.B Order dependencies
2 a | a; | 40 Py : tj.A= tJB Py = tj.A# f_/‘.B DC discovery
3 az | a1 | 40 Ps : . C = tj.C Pes = ti.C 75 tJC Conclusion
Pﬁlt,'.C>1.'j.C PgIt,CZtJC
Py:t.C<t.C P0=t.A<Lt.B

CFD discovery

Any combination of these predicates may be a valid DC.



Reduction to coverage

Coverage
=(P; A Pj A Py) is a valid DC on D

For every pairs of tuples in /, P;, P; and Py cannot be all true

i’

For every pairs of tuples in /, at least one of P;, P; and Py if false

¢

For every pairs of tuples in /, at least one of =P;, =P; and =Py is true
¢

—Pj, =P and =P covers the set of true predicates
(evidence) for every tuple pair

Theorem

=(Py A+ A Pg) is a minimal valid DC if and only if {P1,..., P}

is a minimal set cover for all evidence sets. (Coverage means
intersection). Minimality is wrt set containment.
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3

4

5

FastDC

Function: FastDC (D)
return Set X of all valid denial constraints on D.

P <+ build the predicate space for D
& < build the evidence sets based on P and D
for minimal cover C of E do

| T =xu{-C}

Example

Evidence sets &:
tupleid | A | B |

1 ar | a1 | 50 (2,3),(3,2) = {P», P, Ps, Pg, P10, P12, P1a}
2 @ | a | 40 (2 1) (3,1) = {Ps, Ps, Ps, Ps, Po, P2, P1s}
3 as ai 40

(1,2),(1,3) ={P», P5, Ps, P7, P10, P11, P13}
= P, covers the set of true predicates minimally.
Hence, =(—=P>) = =P is a valid minimal DC.
= P10, P14 covers the set of true predicates minimally.

Hence, =(=P1oA # Pi4) is a valid minimal DC
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Some conclusions Data Quality Rule

Discovery

Implication problem

® Most algorithm rely in some or other way on the
axiomatization of implication of constraints

Introduction

FD discovery
Overview of methods

® Old classical problem, but needs revisiting for data quality

Naive methods

constraints TANE
Approximate FD
Pruning discovery
CFD discovery
® Data mining learns us that in order to explore large spaces Order dependencies
to find patterns (rules), pruning is required. DC discovery

Conclusion

® All discovery algorithm rely on pruning methods based on
implied constraints or thresholds for support, confidence (or
other measures).

Open problems

® Many of the constraint formalisms do not have discovery
algorithms yet

® For those who have, benchmarking is needed, to understand
how they can be made more efficient.
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