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Detecting errors
We have seen many different types of data quality dependencies.

In the constraint-based data quality “paradigm”

“Errors are violations of the constraints”

When constraints are given

Checking for violations (=errors) is a matter of implementing
“easy” checks on top of a DBMS.

There has been work on detecting violations by means of SQL
queries.

Nevertheless, largely unexplored area of research.

• Increased efficiency by using specialised indexes?
• Incremental maintenance (violations are continuously

monitored)?
• Distributed violation checking (when data is partitioned)?
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Detecting errors

Most work, however, relates to discovering the constraints,
which can then be used to detect the errors.

We focus on the discovery task ...
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Where do data quality constraints/dependencies come from?
• Manual design (expensive and time consuming).

• Business rules (not expressive enough).

Dependency discovery: Idea

Given a sample of the data, find data quality dependencies that
hold on the sample.

Discovery
Sample

Data quality
dependencies

Inspiration from data mining algorithms:

Data mining techniques have been successfully applied to
discover some of the data quality rules that we have seen earlier.

There already many different algorithms for a variety of
dependencies!
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Existing discovery algorithms (partial list)

FDs TANE: An Efficient Algorithm for Discovering Functional and Approximate Dependencies, Y. Huhtala, J.
Kärkkainen, P. Porkka, H. Toivonen, Computer Journal, 1999.

FDs DFD: Efficient Functional Dependency Discovery, Z. Abedjan, P. Schulze, F. Naumann, CIKM 2014.

CFDs Discovering Conditional Functional Dependencies, W. Fan, F. Geerts, L. Jianzhong, M. Xiong, TKDE, 2010.

CFDs Discovering Data Quality Rules, F. Chiang, R. Miller,VLDB, 2008.

CFDs Estimating the confidence of conditional functional dependencies, G. Cormode, L. Golab, F. Korn, A. McGregor,
D. Srivastava, X. Zhang, SIGMOD 2009.

DDs Differential dependencies: Reasoning and discovery, S. Song, L. Chen, TODS, 2011

INDs Unary and n-ary inclusion dependency discovery in relational databases. F. De Marchi, S. Lopes, and J.-M. Petit.,
JIIS 2009.

INDS Divide & conquer-based inclusion dependency discovery. T. Papenbrock, S. Kruse, J.-A. Quianè-Ruiz, and F.
Naumann. VLDB, 2015.

CINDs Discovering conditional inclusion dependencies, J. Bauckmann Z. Abedjan, U. Leser, H. Müller, F. Naumann,
CIKM 2012.

DCs Discovering denial constraints, X. Chu, I. Ilyas, P. Papotti, VLDB, 2013.

eRs Discovering editing rules for data cleaning. T. Diallo, J.-M. Petit, and S. Servigne. AQB, 2012.

MDs Discovering matching dependencies, S. Song and L. Chen. CIKM, 2009.
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Discovery algorithms

Discovery algorithms can be roughly classified as:

• Schema Driven
• Usually sensitive to the size of the schema.
• Good for long thin tables!

• Instance Driven
• Usually sensitive to the size of the data.
• Good for fat short tables!

• Hybrid
• Try to get the best of both worlds...
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We start by looking at Functional Dependency (FD) discovery.
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Discovering functional dependencies

Problem Statement

Input: Database instance D over schema R.

Output: Set Σ of all FDs ϕ = R(X → Y ) that hold on D, i.e.,
such that D |= ϕ.

Uses

Schema design Data cleaning
Key discovery Anomaly detection
Query optimization Index selection
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A first observation: Not all FDs are interesting

• Trivial: Attributes in RHS 1 are a subset of attributes on
LHS.
• R([Street,City ]→ [City ])
• Any trivial FD holds on a dataset.

• Non-trivial: At least one attribute in RHS does not appear
on LHS.
• R([Street,City ]→ [Zip,City ])

• Completely non-trivial: Attributes in LHS and RHS are
disjoint.
• R([Street,City ]→ [Zip])

When discovering FDs...

Only interested in completely non-trivial functional
dependencies.

1RHS=right hand side; LHS=left hand side
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Further observations...

Logical implication

• It suffices to only discover a minimal set of FDs from the
data, from which all other FDs that hold can be derived...

⇒ Finding out when FDs can be derived from other FDs is
known as an implication problem
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General implication problem

The implication problem

To determine,

• given a schema R, a set Σ of constraints and a single
constraint ϕ defined on R,

• whether or not Σ implies ϕ, denoted by Σ |= ϕ.

That is, whether for any instance D of R that satisfies Σ, D also
satisfies ϕ (D |= ϕ).

Redundancy

To remove redundant data quality rules. Indeed, ϕ ∈ Σ can be
removed if (Σ \ {ϕ}) |= ϕ.

For FDs, this is easy to check.
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Finite axiomatizability of FDs

Armstrong’s axioms for FDs 2:

Reflexivity : If Y ⊆ X , then X → Y

Augmentation : If X → Y , then XZ → YZ

Transitivity : If X → Y and Y → Z , then X → Z

Sound and complete: Σ |= φ iff φ can be inferred from Σ using
the axioms.

Example

Relation R = {A,B,C ,G ,H, I}
FDs Σ = {A→ B,A→ C ,CG → HCG → I ,B → H}.
Show:

• Σ |= A→ H. Why?

A→ B, B → H, transitivity, A→ H.

• Σ |= CG → HI . Why?

Augmentation of CG → I to infer
CG → CGI , augmentation of CG → H to infer CGI → HI ,
and then transitivity.

2We use X → Y to denote FD R(X → Y )
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Recall, we want to pinpoint precisely which FDs are sufficient to
discover.

⇒ They must form a minimal cover
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Cover of FDs

Minimal Cover

Given a set Σ of FDs, a minimal cover of Σ is a set Σ′ of FDs

• such that Σ and Σ′ are equivalent, i.e., Σ |= ϕ′ for all
ϕ′ ∈ Σ′ and Σ′ |= ϕ for all ϕ ∈ Σ; and

• no proper subset of Σ′ has the previous property (it is
minimal); and

• removing any attribute from a LHS of an FD in Σ′ destroys
equivalence (non-redundancy)

Discovery algorithms should preferably return a cover of all FDs
that hold on a given instance!
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Discovering covers

Algorithmically, you can either

1 Post-process discovered FDs to obtain a cover
• This can be done using Armstrong’s axioms

2 Interleave redundancy checks during discovery process
• Most algorithms follow this approach
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Discovering functional dependencies

A lot of different algorithms:

• Schema-driven:
• TANE [Huhtala et al, Computer Journal 1999]
• FUN [Novelli et al., 2001]
• FDMine[Yao et al., 2002]
• DepMiner[Lopez et al., 2000]

• Instance-driven: FASTFD [Wyss et al, DaWaK, 2001]

• Hybrid:
• FDEP [Flach et al.,1999]
• DFD [Abedjan et al. 2015]
• . . .
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Overview FD discovery

• Describe some naive methods

• Describe TANE algorithm in detail

• Mention other methods
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Naive FD discovery algorithm

Naive Algorithm

1 Function: find_FDs (D)
2 return All valid FDs ϕ such that D |= ϕ.

3 for each attribute A in R do
4 for each X ⊆ R \ {A} do
5 for each pair (t1, t2) ∈ D do
6 if t1[X ] = t2[X ] &

t1[A] 6= t2[A] then
7 break

8 return X → A

Complexity: For each of
the |R| possibilities for
RHS:

• check 2|R|−1

combinations for
LHS

• scan the db |D|2/2
times for each
combination.

Don’t use this algorithm!

Very inefficient! No pruning of trivial or inferred FDs.
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Slightly less naive FD discovery algorithm

Less Naive Algorithm

1 Function: all_count (D)
2 return Store count(D,X ) for all X ⊆ R.

1 Function: find_FD (D)
2 return All valid FDs ϕ such that D |= ϕ.

3 for each attribute A in R do
4 for each X ⊆ R \ {A} do
5 if

count(D,X )=count(D,X ∪ A)
then

6 return X → A

Complexity:

• Precompute
SELECT

COUNT(DISTINCT

X) FROM R for
each X ⊆ R.

• For each of the |R|
possibilities for
RHS: check 2|R|−1

combinations for
LHS.

Also don’t use this algorithm!

Database scans are factored out of the loop, but still inefficient!
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TANE

TANE algorithm improves on these naive methods.

Idea behind the approach:

1 Reduce column combinations through pruning
• Modelling of search space as lattice
• Reasoning over FDs

2 Reduce tuple sets through partitioning
• Partition data according to attribute values
• Level-wise increase of size of attribute set
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Search space modelling

• Model search space as power set lattice.

Power set lattice

• Elements in lattice: subsets of attributes in R;

• Partial order: X ⊆ Y ;

• Join of two elements X and Y is X ∪ Y ;

• Meet of two elements X and Y is X ∩ Y .

Existing Solutions

• Breadth-first traversal
• Tane [Huhtala et al., 1999]
• FUN [Novelli et al., 2001]
• FDMine [Yao et al., 2002]
• DepMiner [Lopez et al., 2000]

• Depth-first traversal
• FastFD [Wyss et al., 2001]

• MISC
• FDEP [Flach et al.,1999]
• DFD [Abedjan et al. 2015]
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Lattice traversal

The lattice structure brings some order in the exploration space.

Bottom up traversal through lattice

• only minimal dependencies

• always tests for X \ A→ A for A ∈ X

• Pruning

• Re-use results from previous level

Main idea:

For each visited element X in the lattice
⇒ maintain a set of candidate RHS.
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RHS Candidate sets

RHS Candidate set C(X )

• When considering X , it stores only those attributes that
might depend on all other attributes of X .
• I.e., those that still need to be checked
• If A ∈ C(X ) then A does not depend on any proper

subset of X , i.e.,
C(X ) = R \ {A ∈ X | D |= X \ A→ A}

Let R = {ABCD} and suppose that D |= A→ C and
D |= CD → B. Then,

• C(A) = ABCD \ {} = C (B) = C (C ) = C (D)

• C(AB) = ABCD \ {}
• C(AC ) = ABCD \ {C} = ABD

• C(CD) = ABCD \ {}
• C(BCD) = ABCD \ {B} = ACD
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RHS Candidate pruning

Minimality Check

For minimality it suffices to consider X \ A→ A where

• A ∈ X and A ∈ C(X \ {B}) for all B ∈ X .

• I.e., A is in all candidate sets of the subsets.

Let X = {ABC}. Assume we know C → A from previous step.

• Need to test three dependencies: AB → C , AC → B, and
BC → A. We should not be testing BC → A, because we know
C → A

• Candidate sets of subsets of ABC :

• C(AB) = ABC , C(AC ) = BC , C(BC ) = ABC

• E.g., BC → A does not need to be tested for minimality, because
A is not in all three candidate sets:

A 6∈ C(AB) ∩ C(AC) ∩ C(BC) = {BC}.

• AB → C , AC → B need to be tested, because B and C appear in
all candidate sets.
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RHS Candidate pruning

Final pruning step

• If C(X ) = {} then C(Y ) = {} for all Y ⊃ X .
• I.e, prune all supersets

• No Y \ {A} → A can be minimal and Y can be ignored.

Existing Solutions

• Breadth-first traversal
• Tane [Huhtala et al., 1999]
• FUN [Novelli et al., 2001]
• FDMine [Yao et al., 2002]
• DepMiner [Lopez et al., 2000]

• Depth-first traversal
• FastFD [Wyss et al., 2001]

• MISC
• FDEP [Flach et al.,1999]
• DFD [Abedjan et al. 2015]
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Improved RHS candidate pruning

Using implication rules

Let B ∈ X and let X \ B → B hold. Then,

X → A implies X \ B → A.

• E.g., A→ B holds. Then AB → C implies A→ C .

Use this to reduce candidate set:

• If X \ B → B for some B, then any dependency with all of
X on LHS cannot be minimal.

• Just remove B.

Revised C(X ): C+(X )

Define

C+(X ) = {A ∈ R | for all B ∈ X ,

X \ {A,B} → B does not hold}

Special case: A = B, C+(X ) = C(X ).
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Improved RHS candidate pruning

The definition C+(X ) removes three types of candidates:

• C1 = {A ∈ X | X \ A→ A holds} (as before)
• C2 = {R \ X |if there exists a B ∈ X such that X \ B → B

holds.}
• C3 = {A ∈ X | if there exists B ∈ X \ A such that

X \ {A,B} → B holds }
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Example of C2:
Recall

C+(X ) = {A ∈ R | for all B ∈ X , X \ {A,B} → B does not hold}

and

C2 = {R\X | if there exists a B ∈ X such that X \ B → B holds.}

Consider R = {ABCD}, X = {ABC}. Assume C+(X ) = ABCD
initially.

• Discovery of C → B

• Remove B from C+(X )

• Additionally remove R \ X = D.

Ok, because remaining combination of LHS contains B and C
and ABC → D is not minimal because C → B.
Together: C+(ABC ) = {ABCD} \ {BD} = {AC}.
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Example of C3:
Recall

C+(X ) = {A ∈ R | for all B ∈ X , X \ {A,B} → B does not hold}

and

C3 = {A ∈ X | if there exists B ∈ X \ A such that

X \ {A,B} → B holds

Same idea as before, but for subsets. Assume Y ⊂ X such that
Y \ B → B holds for some B ∈ Y . Then we can remove from
C+(X ) all A ∈ X \ Y .

Consider X = ABCD and let C → B. We have BC = Y ⊆ X
and X \ Y = AD.

• Thus can remove all AD.

Ok, any remaining combination of LHS contains B and C . Hence
ABC → D and BCD → A. Again, since C → B any such FD is
not minimal.
Together: C+(X ) = C .
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Key pruning

Insight

If X is superkey and X \ B → B, then X \ B is also a superkey.

1 If X is superkey, no need to test any X → A.

2 If X is superkey and not key, any X → A is not minimal (for
any A 6∈ X ).

3 If X is superkey and not key, if A ∈ X and X \ A→ A then
X \ A is superkey, and no need to test.

Can prune all keys and their supersets
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TANE Base algorithm

TANE

1 Function: tane(D)

2 return All valid minimal FDs ϕ such that D |= ϕ.

3 L0 := ∅
4 C+(∅) := R
5 L1 := {A | A ∈ R}
6 ` = 1
7 while L` 6= ∅ do
8 compute_dependencies(L`)
9 prune(L`)

10 L`+1:=generate_next_level(L`)
11 ` := `+ 1
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TANE: Generating lattice levels

TANE

1 Function: generate_next_level(L`)

2 return Generate candidate X ⊆, |X | = `+ 1

3 L`+1 := ∅
4 for K ∈ prefix_blocks(L`) do
5 for Y ,Z ⊆ K , Y 6= Z do
6 X := Y ∪ Z
7 if for all A ∈ X , X \ A ∈ L` then
8 L`+1 := L`+1 ∪ X

9 return L`+1

Explanation

• L`+1 consists of all X of size `+ 1 such that all Y ⊂ X are
in L`.

• Prefix blocks: disjoint sets from L` with common prefix of
size `− 1 (all pairs for ` = 1)

• Line 5. All subsets of a new set must appear in a lower level.
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TANE: Compute dependencies

TANE

1 Function:
compute_dependencies(L`)

2 return Minimal dependencies

3 for X ∈ L` do
4 C+(X ) :=

⋂
A∈X C

+(X \ A)

5 for X ∈ L` do
6 for A ∈ X ∩ C+(X ) do
7 if X \ A→ A is valid then
8 return X \ A→ A
9 Remove A from C+(X )

10 Remove all B ∈ R \ X
from C+(X ).

Explanation

l4 Create candidate
sets; each attribute
must appear in all
candidate sets of
smaller size

l6 Only test attributes
from candidate set

l7 Actual test on data

l9 Reduce candidates by
newly found
dependency

l10 Reduce candidates by
all other attributes:
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TANE: Pruning

TANE

1 Function: pruning(L`)

2 for X ∈ L` do
3 if C+(X ) = ∅ then
4 delete X from L`

5 if X is a (super) key then
6 for A ∈ C+(X ) \ X do
7 Z :=

⋂
B∈X C

+(X ∪ A \ B)
8 if A ∈ Z then
9 return X → A

10 delete X from L`

Explanation

• Line 3: Basic pruning. Deletion from L` ensures that
supersets cannot be created during level generation (loops
not executed on empty candidate sets)

• Lines 4-8: Key pruning
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TANE Sample run

R = ABCD, C → B and AB → D are to be discovered (Also:
AC → D by implication)

1 L0 = ∅,
• C+(∅) = ABCD. Nothing to do

2 L1 = {A,B,C ,D}.
• C+(X ) = ABCD for all X ∈ L1
• Still nothing to do: No FDs can be generated from

singletons
• Thus, no pruning

3 L2 = {AB,AC ,AD,BC ,BD,CD}
• E.g.,
C+(AB) = C+(AB \A)∩C+(AB \B) = ABCD ∩ABCD

• C+(X ) = ABCD for all X ∈ L2.
• Dep. checks for AB : A→ B and B → A Nothing

happens
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TANE Sample run (cnt’d)

3 L2 = {AB,AC ,AD,BC ,BD,CD}
• C+(X ) = ABCD for all X ∈ L2
• Dep. checks for BC : B → C (no!) and C → B (yes!)
• Output C → B
• Delete B from C+(BC ) = ACD
• Delete R \ {BC} from C+(BC ) = C
• (Note BC → A and BC → D are not minimal).

4 L3 = {ABC ,ABD,ACD,BCD}
• C+(ABC ) = C+(AB) ∩ C+(AC ) ∩ C+(BC ) = C
• C+(BCD) = C+(BC ) ∩ C+(BD) ∩ C+(CD) = C
• C+(ABD) = C+(ACD) = ABCD unchanged
• Dep. check for ABC : ABC ∩ C+(ABC ) are candidates
• AB → C no! Did not check BC → A and AC → B
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TANE Sample run (cnt’d)

4 L3 = {ABC ,ABD,ACD,BCD}
• C+(ABC ) = C+(BCD) = C
• C+(ABD) = C+(ACD) = ABCD
• Dep. check for ABD: ABD ∩ C+(ABD) are candidates

• AD → B and BD → A: no!
• AB → D: yes! Output AB → D
• Delete D from C+(ABD) = ABC
• Delete R \ ABD from C+(ABD) = AB

• Dep. check for BCD: BCD ∩ C+(BCD) are candidates
• Only need to check BD → C : no!

• Dep. check for ACD: ACD ∩ C+(ACD) are candidates
• CD → A and AD → C : no!
• AC → D: yes! Output AC → D
• Delete D from C+(ABD) = ABC
• Delete R \ ACD from C+(ABD) = AC
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TANE Sample run (cnt’d)

5 L4 = ABCD
• C+(ABCD) =
C+(ABC ) ∩ C+(ABD) ∩ C+(ACD) ∩ C+(BCD) = {}

• Nothing to check
• Did not need to check
• BCD → A: Not minimal because C → B
• ACD → B: Not minimal because C → B
• ABD → C : Not minimal because AB → D
• ABC → D: Not minimal because AC → D.

6 Done.

7 Ouput: C → B, AB → D, AC → D.
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Dependency checking

X -equivalence

Tuples s and t are X -equivalent wrt attribute set X if
t[A] = s[A] for all A ∈ X .

X -Partitioning

Attribute set X partitions D into equivalence classes:

[t]X = {s ∈ D | ∀A ∈ X , s[A] = t[A]}.

Clearly,
D = [t1]X ∪̇ [t2]X ∪̇ · · · ∪̇ [tk ]X .

for some t1, . . . , tk . We denote the set of parts by πX .
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Partitioning example

tuple id A B C D
1 a1 b1 c1 d1
2 a1 b2 c2 d3
3 a2 b2 c1 d4
4 a2 b2 c1 d1
5 a2 b3 c3 d5
6 a3 b3 c1 d6
7 a3 b4 c4 d1
8 a3 b4 c5 d7

[1]A = [2]A = {1, 2}
πA = {{1, 2}, {3, 4, 5},

{6, 7, 8}}
πBC = {{1}, {2}, {3, 4}, {5},

{6}, {7}, {8}}
πD = {{1, 4, 7}, {2}, {3}, {5},

{6}, {8}}
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Partition refinement

Partition π refines partition π′ if every equivalence class in π is
a subset of some equivalence class in π′.

• X → A if and only if πX refines πA.

• πX refines πA if and only if |πX | = |πXA|
• Why?

• If πX refines πA then πAX = πX
• πXA always refines πA.
• ⇒ If πXA 6= πA then |πX | 6= |πXA|
• ⇒ if |πX | = |πXA| then πXA = πX .

Testing validity of FDs:

We have that D |= X → A if and only if |πX | = |πXA|.



Error Detection and
Data Quality Rule

Discovery

Introduction

FD discovery
Overview of methods

Naive methods

TANE

Approximate FD
discovery

CFD discovery

Order dependencies

DC discovery

Conclusion

42

Partition refinement

Partition π refines partition π′ if every equivalence class in π is
a subset of some equivalence class in π′.

• X → A if and only if πX refines πA.

• πX refines πA if and only if |πX | = |πXA|
• Why?

• If πX refines πA then πAX = πX
• πXA always refines πA.
• ⇒ If πXA 6= πA then |πX | 6= |πXA|
• ⇒ if |πX | = |πXA| then πXA = πX .

Testing validity of FDs:

We have that D |= X → A if and only if |πX | = |πXA|.



Error Detection and
Data Quality Rule

Discovery

Introduction

FD discovery
Overview of methods

Naive methods

TANE

Approximate FD
discovery

CFD discovery

Order dependencies

DC discovery

Conclusion

42

Partition refinement

Partition π refines partition π′ if every equivalence class in π is
a subset of some equivalence class in π′.

• X → A if and only if πX refines πA.

• πX refines πA if and only if |πX | = |πXA|
• Why?

• If πX refines πA then πAX = πX
• πXA always refines πA.
• ⇒ If πXA 6= πA then |πX | 6= |πXA|
• ⇒ if |πX | = |πXA| then πXA = πX .

Testing validity of FDs:

We have that D |= X → A if and only if |πX | = |πXA|.



Error Detection and
Data Quality Rule

Discovery

Introduction

FD discovery
Overview of methods

Naive methods

TANE

Approximate FD
discovery

CFD discovery

Order dependencies

DC discovery

Conclusion

43

Partition refinement

Testing validity of FDs:

We have that D |= X → A if and only if |πX | = |πXA|.

Example
tuple id A B

1 a1 b1
2 a1 b1
3 a2 b1
4 a2 b1
5 a2 b1
6 a3 b2
7 a3 b2
8 a3 b2

πA = {{1, 2}, {3, 4, 5}, {6, 7, 8},
πB = {{1, 2, 3, 4, 5}, {6, 7, 8}}
πAB = {{1, 2}, {3, 4, 5}, {6, 7, 8}}

Hence, |πAB | = |πA| and A→ B. Note, |πAB | > |πB | and B → A
does not hold.
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Striped partitions

Idea: Optimization

Remove equivalence classes of size 1 from partitions.

Why? Singleton equivalence class cannot violate any FD.

Issue with striped partitions
tuple id A B

1 a1 b1
2 a1 b2
3 a1 b3
4 a1 b3
5 a1 b4
6 a2 b5
7 a2 b5
8 a3 b6

πA = {{1, 2, 3, 4, 5}, {6, 7}, {8}}
π′A = {{1, 2, 3, 4, 5}, {6, 7}}
πAB = {{1}, {2}, {3, 4}, {5}, {6, 7}, {8}}
π′AB = {{3, 4}, {6, 7}}

Observe |π′AB | = |π′A| yet A→ B does not hold.
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Striped partitions

Error functions

For striped partitions define

e(X ) =
‖π′X‖ − |π′X |
|D|

where ‖π′X‖ is the sum of sizes of elements in π′X .
Then, X → A if and only if e(X ) = e(XA).

Example

π′A = {{1, 2, 3, 4, 5}, {6, 7}}
‖π′A‖ = 7

π′AB = {{3, 4}, {6, 7}}
‖π′AB‖ = 4

e(A) = (7− 2)/8 = 5/8

e(AB) = 4− 2/8 = 2/8.

Hence, e(A) 6= e(AB) and A→ B does not hold.
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Where are the partitions used?

TANE

1 Function:
compute_dependencies(L`)

2 for X ∈ L` do
3 C+(X ) :=

⋂
A∈X C+(X \ A)

4 for X ∈ L` do
5 for A ∈ X ∩ C+(X ) do
6 if X \ A→ A is valid then
7 return X \ A→ A
8 Remove A from

C+(X )
9 Remove all B ∈ R \ X

from C+(X ).

Validity test

l6 e(X \ A) = e(A)?

Efficient algorithms in place to compute striped partitions.
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Experimental comparison

256MB 4GB 8GB 16GB 32GB 100GB

A
d
u
lt

Tane ML ML 74
Fun ML ML ML 112
Fd Mine ML ML ML ML ML 532
Dfd ML 6
Dep-Miner 6103
FastFDs 6097
Fdep 861

L
et

te
r

Tane ML ML ML ML 274
Fun ML ML ML ML 534
Fd Mine ML ML ML ML ML 7205
Dfd ML 6
Dep-Miner 1090
FastFDs 1015
Fdep 293

H
o
rs

e

Tane ML ML ML ML 491
Fun ML ML ML ML TL TL
Fd Mine ML ML ML ML ML ML
Dfd TL TL TL TL TL TL
Dep-Miner TL TL TL TL TL TL
FastFDs 411
Fdep 8

TL: time limit of 4 hours exceeded
ML: memory limit exceeded

Table 2: Memory experiment (runtimes in seconds)

to pre-build all PLIs for the next level. To prevent memory
overflows, PLIs could be written to disk when memory is
exhausted. In this way, Tane could turn memory limits
into longer execution times.

Fun: In contrast to Tane, Fun needs to keep all cardinality
counts from already finished lattice levels in memory, be-
cause the recursive cardinality look-ups might require them
later on. So in the worst case, namely if most PLIs are ac-
tually needed, the memory consumption for Fun becomes a
bit higher than the memory consumption of Tane.

Fd Mine: Fd Mine would have a similar memory con-
sumption than Tane if it would not produce so many non-
minimal results. These huge result sets eat up all memory.

DFD: Dfd has a better memory performance than the other
lattice traversal algorithms, because it prunes much more
aggressively and, hence, creates much fewer PLIs. It also
monitors its memory consumption to free least recently used
PLIs from its internal PLI store. This basically trades the
memory limit on the horse dataset for a time limit.

Dep-Miner, FastFDs and Fdep: The three algorithms
Dep-Miner, FastFDs and Fdep have much lower memory
requirements than lattice-based algorithms, because they
operate directly on the data and store intermediate results
in memory e�cient tree structures. Fdep’s FD-tree is espe-
cially memory e�cient, because its size directly scales with
the size of the result set.

4.6 Extrapolation of experimental results
Our experiments have shown that all algorithms have spe-

cific advantages and disadvantages: Lattice traversal algo-
rithms scale well with the number of rows, but their perfor-
mance decreases for a large number of columns; di↵erence-
and agree-set algorithms as well as dependency induction
algorithms scale well with an increasing number of columns,
but have performance issues with many rows. For these in-
sights, each experiment evaluated the algorithms on only
a small cross section of parameters. In the following, we

extrapolate previous measurements in order to predict the
fastest algorithm for any input dataset.

For this extrapolation, we assume that main memory is
arbitrary large. This gives us the best performance for
each algorithm. If the memory is not su�cient, the algo-
rithms require memory management techniques that either
write intermediate data structures (partially) to disk or op-
timistically delete and later rebuild them if necessary. These
techniques would shift the performance to the disadvantage
of lattice based algorithm, because they hit memory limits
much earlier than the other algorithms. We do not ana-
lyze this dimension here, because no FD algorithm besides
Dfd has actually tried memory management techniques and
extending the algorithms is not in the focus of this paper.

For any combination of column and row counts, we want
to give a prediction for the fastest algorithm. From our ex-
periments, we already know the fastest algorithms for some
of these combinations, e.g., the bold runtimes in Table 1.
The scalability experiments have further shown the best al-
gorithms for longer ranges of row or column numbers. Fig-
ure 7 places all these observations into a matrix. There are
points for Tane, Fun, Dfd, and Fdep. All other algorithms
never performed best. We already see that all points from
Fun lie in the very lower left corner of the chart and are
superimposed by points from Fdep. Since Fun performs
only sporadically best and only for such a small parameter
setting, we ignore these points in our extrapolation.

DFD           Tane             FDep 

Figure 7: Fastest algorithm with respect to column
and row counts when memory is arbitrary large.

With the measurement points of the best algorithms set,
we now select those points for which Dfd and Tane per-
form equally well; then we calculate a regression through
these points. Afterwards, we do the same for Tane and
Fdep. These two regression lines border areas in which one
algorithm is expected to perform best.

Note that the border line between Tane and Fdep is cal-
culated with only small datasets. It is therefore less precise
than the line between Dfd and Tane. We tried to add
some more measurements at 40 and 60 columns using the
plista and uniprot datasets, but Tane always exceeded our
memory limit of 100 GB (it actually exceeded 128 GB). The
exact border lines may vary slightly anyways depending on
the distribution of FDs in the input dataset, because this
also influences the algorithms’ performance as shown for the
fd-reduced dataset in Section 4.4.

1092

• Source: Functional Dependency Discovery: An Experimental
Evaluation of Seven Algorithms, Paperbrock et al, VLDB
2016

• https://hpi.de/naumann/projects/repeatability/data-
profiling/fds.html
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Approximate FD discovery

We next generalise TANE for discovering approximate FDs
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Approximate FDs

An approximate FD X → A holds on D if

err(X → A) ≤ ε,

where

err(X → A) =
min{|S | | S ⊆ D,D \ S |= X → A}

|D| ,

i.e., minimum number of tuples to be removed from D such
that X → A holds.

TANE can be modified for approximate FDs
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Approximate FD

Example
tuple id A B

1 a1 b1
2 a1 b2
3 a1 b3
4 a1 b3
5 a1 b4
6 a2 b5
7 a2 b5
8 a3 b6

tuple id A B
3 a1 b3
4 a1 b3
6 a2 b5
7 a2 b5
8 a3 b6

We know A→ B does not hold.

err(X → A) = 3/8

Error function can be efficiently computed using striped
partitions.
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Discovering approximate FDs

approx-TANE

1 Function: compute_approximate_dependencies(L`)

2 for X ∈ L` do
3 C+(X ) :=

⋂
A∈X C

+(X \ A)

4 for X ∈ L` do
5 for A ∈ X ∩ C+(X ) do
6 if X \ A→ A is valid then
7 return X \ A→ A
8 Remove A from C+(X )
9 Remove all B ∈ R \ X from C+(X ).

10 Line 6 is replaced by:
11 if err(X \ A→ A) ≤ ε then

12 Line 9 is replace by:
13 if X \ A→ A holds exactly then
14 Remove all B ∈ R \ X from C+(X ).



Error Detection and
Data Quality Rule

Discovery

Introduction

FD discovery
Overview of methods

Naive methods

TANE

Approximate FD
discovery

CFD discovery

Order dependencies

DC discovery

Conclusion

52

CFD Discovery

TANE can also be generalised for discovering conditional
functional dependencies.
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CFDs

Definition

A CFD is an FD R(X → Y ) expanded with a pattern tableau

Tp =

XA
t1p
...
tk
p

where t1p , . . . , t
k
p are pattern tuples over X ∪ {A}: constants, or

wildcard _.

Example CFD

ϕ2 : [CC = 44,ZIP]→ [STR]

• (cust : [CC ,ZIP]→ [STR],Tp)

• pattern tableau Tp:
CC ZIP STR
44 _ _
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CFD Satisfaction

A CFD R(X → Y ,Tp) is satisfied on a database D iff for any
two tuples s and t in D:
• if s[X ] = t[X ] � tp[X ] for some tp ∈ Tp;

• then also s[A] = t[A] � tp[A].
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CTANE

Modifications needed to TANE:

1 Lattice: (X , tp)-pairs where as in TANE, X is set of
attributes, but extended with pattern tuple.

⇒ Search space is much larger!

2 Pruning: Armstrong’s axioms need to be revised

⇒ Needed to define candidate RHS sets C+(X , tp).

3 Traversal of lattice: Ensure that “most general” patterns are
considered first

⇒ If R([AB]→ C , (a,_,_)) holds, we don’t need
R[([AB]→ C , (a, b,_)).

These modifications suffice to adapt TANE for CFDs!

Most challenging are the modification to Armstrong’s axioms.
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Axioms for CFDs: Reflexivity, augmentation

• FD1’ (reflexivity): If A ∈ X , then ϕ = (R : X → A, tp)

• FD2’ (augmentation):
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Axioms for CFDs: Reflexivity, augmentation

• FD1’ (reflexivity): If A ∈ X , then ϕ = (R : X → A, tp)

X1 · · · A · · · Xk A
. . . a/ · · · a/

X1 · · · Xi · · · Xk A
. . . · · ·

• FD2’ (augmentation):
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Axioms for CFDs: Reflexivity, augmentation

• FD1’ (reflexivity): If A ∈ X , then ϕ = (R : X → A, tp)

X1 · · · A · · · Xk A
. . . a · · · a

• FD2’ (augmentation):

X1 · · · Xk A
tp[X1] . . . tp[Xk] tp[A]

(R : [X1, . . . ,Xk]→ [A], tp)
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Axioms for CFDs: Reflexivity, augmentation

• FD1’ (reflexivity): If A ∈ X , then ϕ = (R : X → A, tp)

X1 · · · A · · · Xk A
. . . a · · · a

• FD2’ (augmentation):
(R : [X1, . . . ,Xk, B]→ [A], t′p)

X1 · · · Xk B A
tp[X1] . . . tp[Xk] tp[A]
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Axioms for CFDs: Transitivity

• FD3’ (transitivity):
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Axioms for CFDs: Transitivity

• FD3’ (transitivity):
(R : [X1, . . . ,Xk]→ [Y1, . . . Y!], tp)

(R : [Y1, . . . , Y!]→ [Z1, . . . Zm], t′p)

(R : [X1, . . . ,Xk]→ [Z1, . . . Zm], t′′p)

X1 · · · Xk Y1 · · · Y!

tp[X1] . . . tp[Xk] tp[Y1] · · · tp[Y!]

Y1 · · · Y! Z1 · · · Zm

t′p[Y1] . . . t′p[Y!] t′p[Z1] · · · t′p[Zm]

X1 · · · Xk Z1 · · · Zm

tp[X1] . . . tp[Xk] t′p[Z1] · · · t′p[Zm]
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MAT
CH
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Axioms for CFDs: Transitivity

• FD3’ (transitivity):
(R : [X1, . . . ,Xk]→ [Y1, . . . Y!], tp)

(R : [Y1, . . . , Y!]→ [Z1, . . . Zm], t′p)

(R : [X1, . . . ,Xk]→ [Z1, . . . Zm], t′′p)

X1 · · · Xk Y1 · · · Y!

tp[X1] . . . tp[Xk] tp[Y1] · · · tp[Y!]

Y1 · · · Y! Z1 · · · Zm

t′p[Y1] . . . t′p[Y!] t′p[Z1] · · · t′p[Zm]

X1 · · · Xk Z1 · · · Zm

tp[X1] . . . tp[Xk] t′p[Z1] · · · t′p[Zm]

MAT
CH



Error Detection and
Data Quality Rule

Discovery

Introduction

FD discovery
Overview of methods

Naive methods

TANE

Approximate FD
discovery

CFD discovery

Order dependencies

DC discovery

Conclusion

58

Axioms for CFDs: Reduction, upgrade

• FD4’ (reduction):

X1 · · · Xi . . . Xk A
tp[X1] . . . . . . tp[Xk] a

(R : [X1, . . . ,Xi, . . . ,Xk]→ A, tp)

• FD5’ (finite domain upgrade): suppose that the only
consistent values for Xi are b1, b2, . . . , bn and

[Discovering Conditional Functional Dependencies, W. Fan, F. Geerts, L.

Jianzhong, M. Xiong, TKDE, 2010.]
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Axioms for CFDs: Reduction, upgrade

• FD4’ (reduction):

X1 · · · Xi . . . Xk A
tp[X1] . . . . . . tp[Xk] a

(R : [X1, . . . ,Xi, . . . ,Xk]→ A, tp)

• FD5’ (finite domain upgrade): suppose that the only
consistent values for Xi are b1, b2, . . . , bn and

(R : [X1, . . . ,Xi, . . . ,Xk]→ A, tp)

X1 · · · Xi . . . Xk A
tp[X1] . . . b1 . . . tp[Xk] tp[A]
tp[X1] . . . b2 . . . tp[Xk] tp[A]
tp[X1] . . . · · · . . . tp[Xk] tp[A]
tp[X1] . . . bn . . . tp[Xk] tp[A]

[Discovering Conditional Functional Dependencies, W. Fan, F. Geerts, L.

Jianzhong, M. Xiong, TKDE, 2010.]
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Axioms for CFDs: Reduction, upgrade

• FD4’ (reduction):

X1 · · · Xi . . . Xk A
tp[X1] . . . . . . tp[Xk] a

(R : [X1, . . . ,Xi, . . . ,Xk]→ A, tp)

• FD5’ (finite domain upgrade): suppose that the only
consistent values for Xi are b1, b2, . . . , bn and

(R : [X1, . . . ,Xi, . . . ,Xk]→ A, tp)

X1 · · · Xi . . . Xk A
tp[X1] . . . . . . tp[Xk] tp[A]
tp[X1] . . . b2 . . . tp[Xk] tp[A]
tp[X1] . . . · · · . . . tp[Xk] tp[A]
tp[X1] . . . bn . . . tp[Xk] tp[A]

[Discovering Conditional Functional Dependencies, W. Fan, F. Geerts, L.

Jianzhong, M. Xiong, TKDE, 2010.]



Error Detection and
Data Quality Rule

Discovery

Introduction

FD discovery
Overview of methods

Naive methods

TANE

Approximate FD
discovery

CFD discovery

Order dependencies

DC discovery

Conclusion

59

Other CFD discovery tasks

The tableau generation problem

Given global support S and global confidence C , an FD
R(X → Y ) on a relation schema R with instance D:
• Find a pattern tableau Tp of smallest size such that the

CFD R(X → Y ,Tp) is S-frequent and C -confident.
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Example: Given [name, type, country] → [price, tax]

tid name type country price tax
1 Harry Potter book France 10 0
2 Harry Potter book France 10 0
3 Harry Potter book France 10 0.05
4 The Lord of the Rings book France 25 0
5 The Lord of the Rings book France 25 0
6 Algorithms book USA 30 0.04
7 Algorithms book USA 40 0.04
8 Armani suit clothing UK 500 0.05
9 Armani suit clothing UK 500 0.05
10 Armani slacks clothing UK 250 0
11 Armani slacks clothing UK 250 0
12 Prada shoes clothing USA 200 0.05
13 Prada shoes clothing USA 200 0.05
14 Prada shoes clothing France 500 0.05
15 Spiderman DVD UK 19 0
16 Star Wars DVD UK 29 0
17 Star Wars DVD UK 25 0
18 Terminator DVD France 25 0.08
19 Terminator DVD France 25 0
20 Terminator DVD France 20 0
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Optimal tableau

For FD [name, type, country] → [price, tax]

tableau with best coverage and support:

name type country price tax
_ clothing _ _ _
_ book France _ 0
_ _ UK _ _

[On Generating Near-Optimal Tableaux for Conditional Functional

Dependencies, Golab et al, VLDB 2008.]
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Coverage of optimal tableau

tid name type country price tax
1 Harry Potter book France 10 0
2 Harry Potter book France 10 0
3 Harry Potter book France 10 0.05
4 The Lord of the Rings book France 25 0
5 The Lord of the Rings book France 25 0
6 Algorithms book USA 30 0.04
7 Algorithms book USA 40 0.04
8 Armani suit clothing UK 500 0.05
9 Armani suit clothing UK 500 0.05
10 Armani slacks clothing UK 250 0
11 Armani slacks clothing UK 250 0
12 Prada shoes clothing USA 200 0.05
13 Prada shoes clothing USA 200 0.05
14 Prada shoes clothing France 500 0.05
15 Spiderman DVD UK 19 0
16 Star Wars DVD UK 29 0
17 Star Wars DVD UK 25 0
18 Terminator DVD France 25 0.08
19 Terminator DVD France 25 0
20 Terminator DVD France 20 0
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A brief word on the discovery of order dependencies
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Recall order dependencies

A typical salary situation

Records for Employees:

Name Job Years Salary
Mark Senior Programmer 15 35K
Edith Junior Programmer 7 22K
Josh Senior Programmer 11 50K
Ann Junior Programmer 6 38K

Example order dependency:
“The salary of an employee is greater than other
employees who have junior job titles, or the same job
title but less experience in the company.”



Error Detection and
Data Quality Rule

Discovery

Introduction

FD discovery
Overview of methods

Naive methods

TANE

Approximate FD
discovery

CFD discovery

Order dependencies

DC discovery

Conclusion

65

Discovering order dependencies

• List-based lattice approach [Discovering Order Dependencies,

Langer, Naumann, VLDB 2015]

• Apriori-like, but order matters: XY → A is different
from YX → A

• Set-based lattice approach [Effective and Complete Discovery of

Order Dependencies via Set-based Axiomatization, Szlichta, Godfrey,

Golab, Kargar, Srivastava, VLDB 2017]

• Rewrite ODs using a set-based canonical form

Both approaches use new pruning rules based on OD
semantics/axioms.
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We next turn our attention to denial constraints

FASTDC Algorithm finds all minimal valid DCs by finding
minimal covers [Chu et al, VLDB 2013]
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Example DC

Example

“Two people living in the same state should have correct
tax rates depending on their income”

∀s, t ∈ D¬(s[AC] = t[AC] ∧ s[SAL] < t[SAL]

∧ s[TR] > t[TR])

FASTDC algorithm first computes predicate space.
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Predicate space

Example

tuple id A B C
1 a1 a1 50
2 a2 a1 40
3 a3 a1 40

Space of predicates P:
P1 : ti .A = tj .A P2 = ti .A 6= tj .A
P3 : ti .B = tj .B P4 = ti .B 6= tj .B
P11 : ti .A = ti .B P12 = ti .A 6= ti .B
P21 : ti .A = tj .B P22 = ti .A 6= tj .B
P5 : ti .C = tj .C P6 = ti .C 6= tj .C
P6 : ti .C > tj .C P8 = ti .C ≥ tj .C
P9 : ti .C < ti .C P10 = ti .A ≤ ti .B

Any combination of these predicates may be a valid DC.
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Reduction to coverage

Coverage

¬(Pi ∧ Pj ∧ Pk ) is a valid DC on D
m
For every pairs of tuples in I , Pi , Pj and Pk cannot be all true
m
For every pairs of tuples in I , at least one of Pi , Pj and Pk if false
m
For every pairs of tuples in I , at least one of ¬Pi , ¬Pj and ¬Pk is true
m
¬Pi , ¬Pj and ¬Pk covers the set of true predicates
(evidence) for every tuple pair

Theorem

¬(P1 ∧ · · · ∧ Pk) is a minimal valid DC if and only if {P1, . . . ,Pk}
is a minimal set cover for all evidence sets. (Coverage means
intersection). Minimality is wrt set containment.
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FastDC

1 Function: FastDC (D)
2 return Set Σ of all valid denial constraints on D.

3 P ← build the predicate space for D
4 E ← build the evidence sets based on P and D
5 for minimal cover C of E do
6 Σ := Σ ∪ {¬C̄}

Example

tuple id A B C
1 a1 a1 50
2 a2 a1 40
3 a3 a1 40

Evidence sets E:

(2, 3), (3, 2) = {P2,P3,P5,P8,P10,P12,P14}
(2, 1), (3, 1) = {P2,P3,P6,P8,P9,P12,P14}
(1, 2), (1, 3) = {P2,P3,P6,P7,P10,P11,P13}

⇒ P2 covers the set of true predicates minimally.

Hence, ¬(¬P2) = ¬P1 is a valid minimal DC.

⇒ P10,P14 covers the set of true predicates minimally.

Hence, ¬(¬P10∧ 6= P14) is a valid minimal DC
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Some conclusions

Implication problem

• Most algorithm rely in some or other way on the
axiomatization of implication of constraints

• Old classical problem, but needs revisiting for data quality
constraints

Pruning

• Data mining learns us that in order to explore large spaces
to find patterns (rules), pruning is required.

• All discovery algorithm rely on pruning methods based on
implied constraints or thresholds for support, confidence (or
other measures).

Open problems

• Many of the constraint formalisms do not have discovery
algorithms yet

• For those who have, benchmarking is needed, to understand
how they can be made more efficient.
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