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Entity Resolution
Are we the same?

Data Cleaning Course

VLDB 2017 Summer School, Beijing
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Also known as

Duplicate detection Record linkage
Match Object identification
Fuzzy match Deduplication
Object consolidation Identity uncertainty
Entity clustering Reference reconciliation
Approximate match Merge/purge
Reference matching ....

Ironically, “Duplicate Detection” has many duplicates...

Definition

Duplicate detection is the discovery of multiple representations
of the same real-world object
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Entity Resolution

Problem 1

Representations are not identical.

Solution:
• Similarity measures

• Value- and record-comparisons

• Domain-dependent or domain-independent

Problem 2

Data sets are large.
Quadratic complexity: Comparison of every pair of records.

Solution:
• Algorithms that avoid all comparisons

• Partitioning

• Hash-based
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Entity Resolution

Problem 3

Interaction between objects

Solution:
• Constraint-based reasoning
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Outline

1 Similarity Measures
2 Three (constraint-based) ER methods

3 Conclusions
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Similarity measures

The very first step in the Entity Resolution process to identify
when to objects are similar.

At the basis of this lie similarity measures.
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What is a similarity measure?

Denote by sim(x , y) the similarity between objects x and y

• x and y can be strings, numbers, tuples, objects, images, ...

Normalized when sim(x , y) ∈ [0, 1]:

• sim(x , y) = 1 for exact match

• sim(x , y) = 0 for “completely different” x and y .

• 0 < sim(x , y) < 1 for some approximate similarity.

Example

Distance based Often used

sim(x , y) = 1− dist(x , y) or sim(x , y) =
1

dist(x , y)
,

for distance function dist(x , y). 1

1Reflexive: dist(x , x) = 0, Positive: dist(x , y) ≥ 0, Symmetric:
dist(x,y) = dist(y,x), Triangular inequality: dist(x , z) ≤ dist(x , y) + dist(y , z)
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Hamming distance

Definition

• Number of positions in which two strings (of equal length)
differ; or

• Minimum number of substitutions required to change one
string into the other; or

• Minimum number of errors that could have transformed one
string into the other.

⇒ Used mostly for binary numbers and to measure
communication errors.

Example

• Hamming distance = number of 1’s in x XOR y .

• disthamming(peter,pedro) = 3.
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Edit distances

Compare two strings based on individual characters.

Definition

• Minimal number of edits required to transform one string
into the other.

• Edits: Insert, Delete, Replace (and Match)

• Give different cost to different types of edits

• Give different cost to different letters

Non-minimal edit cost

Consider
distedit(Jones,Johnson)

Delete “Jones”, then insert “Johnson”

DDDDDIIIIIII = 12 edits.
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Levenshtein Distance

Definition

Minimum number of character insertions, deletions, and
replacements necessary to transform s1 into s2. (edit distance,
unit cost for each edit).

Is computed using dynamic programming: Optimality principle:
Best transcript of two substrings must be part of best overall
solution

Levenshtein

1 Initalize matrix M of size (|s1|+ 1)× (|s2|+ 1)
2 Fill matrix M[i , 0] = i and M[j , 0] = j .
3 Recursion

M[i , j ] =

{
M[i , j ] if s1[i ] = s2[j ]
1 + min{M[i − 1, j ],M[i , j − 1],M[i − 1, j − 1]} otherwise

4 return M[|s1|, |s2|]
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Levenshtein Distance

M[i , j ] =

{
M[i , j ] if s1[i ] = s2[j ]
1 + min{M[i − 1, j ],M[i , j − 1],M[i − 1, j − 1]} otherwise

Levenshtein Distance
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Felix Naumann | Data Profiling and Data Cleansing | Summer 2013
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Levenshtein similarity

Definition

simLevenshtein(s1, s2) = 1−
distLevenshtein(s1, s2)

max{|s1|, |s2|}

Example

s1 s2 distance similarity
Jones Johnson 4 0.43
Paul Pual 2 0.5

Paul Jones Jones, Paul 11 0
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Jaro Similarity

Specifically tailored towards sharing of characters:

Definition

Let m be the number of matching characters in s1 and s2:

• two characters x and y are matching if they are the same
and not farther apart than

b
max{|s1|, |s2|}

2
c − 1

.

Let t be the number of matches that appear in a different order
in s1 and s2.

Then,

simJaro =
1
3

(
m
|s1|

+
m
|s2|

+
m − t/2

m
).
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Jaro similarity: Example

simJaro =
1
3

(
m
|s1|

+
m
|s2|

+
m − t/2

m
).

Jaro similarity – Example 

■ ݅ݏ ௝݉௔௥௢ = ଵ
ଷ

௠
|௫| +

௠
|௬| +

௠ି௧
௠

Felix Naumann | Data Profiling and Data Cleansing | Summer 2013
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N-grams

To translate words and text into a set of small pieces, then use
similarity function between sets.

Definition

For texts, a k-gram is a consecutive set of k words.
Sometimes, a k-gram also means just set of substrings of size k .

Example

Consider four documents:

D1 : I am Sam D3 : I do not like green eggs and ham
D2 : Sam I am D4 : I do not like them, Sam I am.

1-grams of all documents: { I, am, Sam, do, not, like, eggs, and,
ham, green, then}}
2-grams {{ {I, am}, {am, Sam}, {Sam, I}, {I do}, {do not},
{not like},{like green}, {green eggs}, {eggs and},{and ham},
{like them}, {them Sam}, {Sam I}}
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Jaccard Similarity

Definition

Given two sets A and B:

simJaccard(A,B) =
|A ∩ B|
|A ∪ B| .

Example

When applied to 2-grams of D1 and D2:

D1 : = A = {{Iam}, {amSam}
D2 : = B = {{SamI}, {Iam}}

Then,

simJaccard(D1,D2) =
|A ∩ B|
|A ∪ B| = 1/3 ≈ 0.333
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Numerical domains

• Normalized absolute distance:

simnormabs(n,m) =

{
1−

(
|n−m|
dmax

)
if |n −m| ≤ dmax

0 otherwise.

Example

If dmax = $1, 000. Then
simnormabs($2000, $2500) = 1− 1/2 = 1/2. Also
simnormabs($200 000, $200 500) = 1− 1/2 = 1/2

• Percentage:

simperc(n,m) =

{
1−

(
100 |n−m|

max{|n|,|m|}pmax

)
if 100 |n−m|

max{|n|,|m|} ≤ pmax

0 otherwise.

Example

If pmax = 33%. Then
simperc($2000, $2500) = 1− 20/33 ≈ 0.394. Now,
simperc($200 000, $200 500) = 1− 0, 25/33 ≈ 0.993.
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Time and geo domains

• Compute difference in dates in terms of number of days,
then apply similarity measure on numerical domain.

• Dates of birth can also be converted to age, again using
measure on numerical domain.

• Geographical location: Map it again to a number (using
some geographical projection); or use distance measures
and derived similarity measure.
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Many more

There are many more similarity measures ...

See e.g., Tutorial [Record Linkage: Similarity Measures and Algorithms

Nick Koudas, Sunita Sarawagi, Divesh Srivastava, SIGMOD 2006.]

In the following, I simply use “�” to denote some similarity
function...
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Swoosh: A Generic Approach to Entity Resolution

• Developed in Stanford [Benjelloun, Omar and Garcia-Molina,

Hector and Menestrina, David and Su, Qi and Whang, Steven Euijong

and Widom, Jennifer (2008) Swoosh: a generic approach to entity

resolution. The VLDB Journal]

• Very generic approach to ER:
• functions for comparing and merging records as

black-boxes
• you can implement them however you want.

• Whenever these functions satisfy certain properties,
however, you will end up with an efficient ER algorithm.
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Swoosh: Inuitive Example

Example
tuple id Name Phone E-mail

1 John Doe 235-2635 jdoe@email.com
2 J. Doe 234-4358
3 John D. 234-4358 jdoe@email.com

Matching rule:

Match(i , j)← ti [Name] � tj [Name]

∨
(
(ti [Phone] = tj [Phone]) ∧ (ti [E-mail] = tj [E-mail])

)
1 Tuples 1 and 2 match.

2 Merge tuples 1 and 2: New tuple 4:
4 John Doe {235-2635, jdoe@email.com

234-4358}
3 tuples 3 and 4 match. Merge.

4 Repeat.

Exhaustive procedure.



Entity Resolution

Introduction

Similarity measures
Distance-based

Token-based

Domain dependent

Three ER methods
Swoosh

Matching dependencies

Dedupalog

Conclusions

27

Swoosh: Inuitive Example

Example
tuple id Name Phone E-mail

1 John Doe 235-2635 jdoe@email.com
2 J. Doe 234-4358
3 John D. 234-4358 jdoe@email.com

Matching rule:

Match(i , j)← ti [Name] � tj [Name]

∨
(
(ti [Phone] = tj [Phone]) ∧ (ti [E-mail] = tj [E-mail])

)
1 Tuples 1 and 2 match.

2 Merge tuples 1 and 2: New tuple 4:
4 John Doe {235-2635, jdoe@email.com

234-4358}
3 tuples 3 and 4 match. Merge.

4 Repeat.

Exhaustive procedure.



Entity Resolution

Introduction

Similarity measures
Distance-based

Token-based

Domain dependent

Three ER methods
Swoosh

Matching dependencies

Dedupalog

Conclusions

27

Swoosh: Inuitive Example

Example
tuple id Name Phone E-mail

1 John Doe 235-2635 jdoe@email.com
2 J. Doe 234-4358
3 John D. 234-4358 jdoe@email.com

Matching rule:

Match(i , j)← ti [Name] � tj [Name]

∨
(
(ti [Phone] = tj [Phone]) ∧ (ti [E-mail] = tj [E-mail])

)
1 Tuples 1 and 2 match.

2 Merge tuples 1 and 2: New tuple 4:
4 John Doe {235-2635, jdoe@email.com

234-4358}
3 tuples 3 and 4 match. Merge.

4 Repeat.

Exhaustive procedure.



Entity Resolution

Introduction

Similarity measures
Distance-based

Token-based

Domain dependent

Three ER methods
Swoosh

Matching dependencies

Dedupalog

Conclusions

27

Swoosh: Inuitive Example

Example
tuple id Name Phone E-mail

1 John Doe 235-2635 jdoe@email.com
2 J. Doe 234-4358
3 John D. 234-4358 jdoe@email.com

Matching rule:

Match(i , j)← ti [Name] � tj [Name]

∨
(
(ti [Phone] = tj [Phone]) ∧ (ti [E-mail] = tj [E-mail])

)
1 Tuples 1 and 2 match.

2 Merge tuples 1 and 2: New tuple 4:
4 John Doe {235-2635, jdoe@email.com

234-4358}
3 tuples 3 and 4 match. Merge.

4 Repeat.

Exhaustive procedure.



Entity Resolution

Introduction

Similarity measures
Distance-based

Token-based

Domain dependent

Three ER methods
Swoosh

Matching dependencies

Dedupalog

Conclusions

28

Notation

Match function

Is a boolean function µ : D ×D → {⊥,>}.
• ⊥ stands for false; > for true

• µ(s, t) if and only if s and t are the same

• E.g., µ(s, t) = > iff sim(s, t) ≥ θ.
• The match function is a black box

Merge function

Merge of s and t is denoted by m(s, t)

• Only defined for matching records

• The merge function is also a black box
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Merge closure

Closure of database under merge function m

Let D be a database instance. Then the merge closure of D,
denoted by D? is the smallest set of tuples such that

• D ⊆ D?; and
• for any s, t ∈ D?, m(s, t) ∈ D?.

The closure is the result of exhaustively applying the merge
operation.

Properties

• Closure is unique :-)

• Can be infinite :-(

Not realistic

The closure will not be very practical ...
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Domination: Reducing the Closure...

Domination

A tuple s is dominated by tuple t if

• µ(s, t) = > (they match); and

• s � t (t holds more information that s)

Here, � is any partial order on tuples:

• � is reflexive, transitive, and anti-symmetric

• Application/domain specific.

Example

We could assume that t1 � t4 and t1 � t4
tuple id Name Phone E-mail

1 John Doe 235-2635 jdoe@email.com
2 J. Doe 234-4358
3 John D. 234-4358 jdoe@email.com
4 John Doe {235-2635, jdoe@email.com

234-4358}

so that

m(t1, t2) contains more information and dominates t1 and t2.
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Instance Domination
We can lift domination between tuples to domination on
instances:

Definition

Instance D′ dominates instance D if every tuple in D is
dominated by a tuple in D′.

Note that instance domination is
• reflexive, transitive
• not antisymmetric. Why? t1 � t4,then t4 � {t1, t4} and
{t4, t1} � t4.

Example

Assuming that t1 � t4 and t1 � t4
tuple id Name Phone E-mail

1 John Doe 235-2635 jdoe@email.com
2 J. Doe 234-4358
3 John D. 234-4358 jdoe@email.com
4 John Doe {235-2635, jdoe@email.com

234-4358}
dominates the original instance.
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Entity resolution according to Swoosh

Definition

Given an instance D, an entity resolution of D, denoted by
ER(D) is a set of tuples such that

• ER(D) ⊆ D∗ (should be in D’s merge closure)

• ER(D) dominates D? (it carries at least as much information
as the merge closure)

• It is the minimal set of tuples satisfying the previous two
conditions.

The hope is that dominance ensures that ER(D) is a finite set.

Assumptions on merge and match function will need to be made
to ensure finiteness.
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ICAR properties
Idempotence:
• for any tuple t, µ(t, t) = > and m(t, t) = t.

• A record always matches itself, and merging it with itself still
yields the same record.

Commutativity:
• for any tuples s and t, µ(s, t) = µ(t, s) and if µ(s, t) = >

then m(s, t) = m(t, s).

• Direction of match and merge is irrelevant

Associativity:
• for any tuples s, t and u such m(m(s, t), u) and

m(s,m(t, u)) exist, then

m(m(s, t), u) = m(s,m(t, u)).

• Order of merge is irrelevant.

Representativity:
• for any tuple u = m(s, t), if µ(v , s) = > then also µ(v , u).

• Merging does not lose matches.
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Merge domination

When the match and merge functions satisfy the ICAR
properties, there is a natural domination order.

Merge domination

Given two tuples s and t we say that s is merge dominated by
t, denoted s ≤ t, if

• µ(s, t) = >; and
• m(s, t) = t.

It just means that s does not add information and can be
replaced by t.
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Monotonicity

Properties of merge domination

For any tuples s and t that match, it holds that

s ≤ m(s, t) and t ≤ m(s, t).

• Merge record always dominates the records it was derived
from

If s ≤ t and s matches u then also t matches u.

• Match function is monotonic

If s ≤ t and s matches u, then m(s, u) ≤ m(t, u).

• Merge function is monotonic

If s ≤ u and t ≤ u and s and t match, then m(s, t) ≤ u.

• Merge is “smallest” dominating tuple.
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Swoosh Guarantees

If ICAR properties are satisfied then

1 ER process is guaranteed to be finite

2 Records can be matched and merged in any order

3 Dominated records can be discarded anytime

That’s what we wanted!
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R-Swoosh Algorithm

R-Swoosh

1 Function: r-swoosh(D)
2 return ER(D).

1 D : ∅
2 while D 6= ∅ do
3 tcurrent:=a tuple in D′
4 Remove tcurrent from D′
5 tbuddy:=null
6 for t ′ ∈ ER(D) do
7 if µ(t ′, tcurrent) = > then
8 /*Recall that µ can be based on matching rules!*/
9 tbuddy = t ′ and ExitFor

10 if tbuddy = null then
11 Add tcurrent to ER(D)

12 else

13 Add m(tcurrent, tbuddy) to ER(D)
14 Remove tbuddy from ER(D).

15 return ER(D).
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Swoosh - Conclusion

Very generic approach

Some optimizations and variants

• Smart ordering reduces comparisons

• F-swoosh: Uses hashing techniques on features

• Incremental F-Swoosh

• D-Swoosh: distributed ER

Please check Stanford Entity Resolution Framework for more
information: http://infolab.stanford.edu/serf/
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Outline

1 Similarity Measures

2 Three (constraint-based) ER methods
• Swoosh
• Matching dependencies
• Dedudaplog

3 Conclusions
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Matching dependencies

• We have seen matching dependencies in the first lecture

• Introduced in a series of papers:

• [Wenfei Fan, Shuai Ma, Nan Tang, Wenyuan Yu: Interaction

between Record Matching and Data Repairing.. J. Data and

Information Quality 4(4): 16:1-16:38 (2014)
• [Wenfei Fan, Hong Gao, Xibei Jia, Jianzhong Li, Shuai Ma:

Dynamic constraints for record matching. VLDB J. 20(4):

495-520 (2011)]
• [Wenfei Fan, Xibei Jia, Jianzhong Li, Shuai Ma: Reasoning about

Record Matching Rules. PVLDB 2(1): 407-418 (2009)]

• Semantics of matching dependencies further explored by
Bertossi et al [Leopoldo E. Bertossi, Solmaz Kolahi, Laks V. S.

Lakshmanan: Data Cleaning and Query Answering with Matching

Dependencies and Matching Functions. Theory Comput. Syst. 52(3):

441-482 (2013)]
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Matching dependencies

• Matching dependencies naturally fit in the Swoosh approach
(as the merge and match function black boxes)

• When used for ER, they also can be equipped with a chase
semantics.
• We have seen examples of the chase in the previous

lecture.
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Matching dependencies: Example

MD

“The similarities of phone and address indicate that the
tuples refer to the same person, and the names should
be matched.”

Consider table P:

Name Phn Addr
John Smith 723-9583 10-43 Oak St.
J. Smith (750) 723-9583 43 Oak St. Ap. 10

Here, 723-9583� (750) 723-9583 and 10-43 Oak St. � 43 Oak
St. Ap. 10.
A matching dependency capturing this cleaning policy:

P[Phn] � P[Phn] ∧ P[Addr] � P[Addr]→ P[Name] ≡ P[Name]
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Matching dependencies

MDs are rules of the form∧
i ,j

R[Ai ] �i ,j S [Bj ]→
∧
k,`

R[Dk ] ≡ S [E`].

The left side captures a similarity condition on pairs of tuples, in
relations R and S Abbreviation: R[Ā] � S [B̄]→ R[D̄] ≡ S [Ē ].

Static interpretation:
• If antecedent is true for a pair of tuples, then the values

R[Dk ] and S [E`] should be the same

Dynamic interpretation:
• Those values on the RHS should be updated to some

(unspecified) common value
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Ingredients

To make sure that the MDs know how to fix the RHS, we can fit
it into Swoosh:

• A set Σ of MDs

• for every attribute A with domain Dom(A):
• a similarity relation �A⊆ Dom(A)×Dom(A)
• a merge function mA : Dom(A)×Dom(A)→ Dom(A)

which idempotent, commutative, and associative.
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Enforcing MDs

MD Chase step

• Given, a pair of instances D and D′

• MD ϕ = R1[X1] � R2[X2]→ R1[A1] ≡ R2[A2]

• A pair of tuples s and t in D such that s[X1] � t[X2] but
s[A1] = a1 6= s[A2] = a2

• Then, D ⇒ϕ,s,t D′ if D′ is the same as D except that

s[A1] = t[A2] = m(a1, a2).

Clean Instance

A clean instance D′ is the result of exhaustively applying MD
chase steps:

D = D0 ⇒ϕ1,s1,t1 D1 ⇒ϕ2,s2,t2 D2 ⇒ϕ1,s3,t3 · · · ⇒ϕk ,sk ,tk D′

and no rule can be applied anymore to D′.
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Guarantees of the Chase Process

Only ICA on matching function is required.
The process terminates after a finite number of steps, resulting in
a clean instance.

If in addition a � a′ implies that a � m(a, a′) then

ICA assumptions

The process terminates after a finite number of steps, resulting in
a unique clean instance.



Entity Resolution

Introduction

Similarity measures
Distance-based

Token-based

Domain dependent

Three ER methods
Swoosh

Matching dependencies

Dedupalog

Conclusions

47

ER with Matching Dependencies

• Implements black box of match in Swoosh in a declarative
way

• Only conditions (ICA) on the merge function m is required
to guarantee a unique solution.

• This leads to a very flexible approach.
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Outline

1 Similarity Measures

2 Three (constraint-based) ER methods
• Swoosh
• Matching dependencies
• Dedudaplog

3 Conclusions
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Logic + Clustering

We next consider an approach that relates

Constraints (logic) + Clustering

It uses a completely different approach to do ER with
constraints....

[Arvind Arasu, Christopher Ré, Dan Suciu: Large-Scale Deduplication

with Constraints Using Dedupalog. ICDE 2009: 952-963]
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Example

Consider wrote(id, pos, author) table:
id pos Authors
1 1 A. Gionis
1 2 H. Manilla
1 3 P. Tsaparas
2 1 A. Gionis
3 1 L. Bhattacharya
4 2 L. Getoor

and PaperRefs(id,title,venue, year) table
id title venue year
1 Cluster Aggregation ICDE 2005
2 Clustering Aggregations Conference on Data Eng 2005
3 Collective ER Data Eng Bull. 2007
4 Collective ER Data Engineering 2007
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Example

First step: Identify Entity Reference Tables

Author!(id,pos)← wrote(id, pos,_)

Publisher!(p)← PaperRefs(_,_,p, _)

Paper!(id)← PaperRefs(id,_,_, _)

These list on which attributes we may want to do ER.

Second step: Associate binary (clustering) relations

Author*(id,pos,id’,pos’)

Publisher*(p,p’)

Paper*(id,id)

These list pairs of objects that may be the same. Dedupalog will
find a clustering of these objects.
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Linking things together

Step 3: Use constraints

Relate the tables with the clustering relations using rules
(constraints)

id title venue year
1 Cluster Aggregation ICDE 2005
2 Clustering Aggregations Conference on Data Eng 2005
3 Collective ER Data Eng Bull. 2007
4 Collective ER Data Engineering 2007

Paper*(id) Publisher*(p)

1

2 3

4
ICDE Conf. On Data Eng

Data 
Eng. 
Bull

Data 
Engin
eering
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Soft-complete rules

Example

“papers with similar titles are likely duplicates”

Paper∗(id , id ′)↔ PaperRefs(id , t,_,_,_),

PaperRefs(id ′, t ′,_,_,_),

TitleSimilar(t, t ′)

• Paper references whose titles appear in TitleSimilar are
likely to be clustered together.

• Paper references whose titles do not appear in
TitleSimilar are not likely to be clustered together.
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Soft-incomplete rules

Example

“papers with very similar titles are likely duplicates”

Paper∗(id , id ′)← PaperRefs(id , t,_,_,_),

PaperRefs(id ′, t ′,_,_,_),

TitleVerySimilar(t, t ′)

• Paper references whose titles appear in TitleVerySimilar

are likely to be clustered together.

• This rule says nothing about paper references whose titles
do not appear in TitleVerySimilar.
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Effect of rules

id title venue year
1 Cluster Aggregation ICDE 2005
2 Clustering Aggregations Conference on Data Eng 2005
3 Collective ER Data Eng Bull. 2007
4 Collective ER Data Engineering 2007

Paper*(id) Publisher*(p)

1

2 3

4
ICDE Conf. On Data Eng

Data 
Eng. 
Bull

Data 
Engin
eering
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Hard rules

Example

“the publisher references listed in PublisherEQ must be
clustered together”

“the publisher references in PublisherNEQ must not be
clustered together”

Publisher∗(x , y)⇐ PublisherEq(x , y)

¬Publisher∗(x , y)⇐ PublisherNEq(x , y)

First rule indicates a “must link”, the second one a “cannot link”.

• Hard rules must be satisfied in any legal clustering
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Complex Hard rules

Example

“whenever we cluster two papers, we must also cluster
the publishers of those papers”

Publisher∗(x , y)⇐ Publishes(x , p1)

Publishes(y , p2), Paper∗(p1, p2).

id title venue year
1 Cluster Aggregation ICDE 2005
2 Clustering Aggregations Conference on Data Eng 2005
3 Collective ER Data Eng Bull. 2007
4 Collective ER Data Engineering 2007

Paper*(id) Publisher*(p)

1

2 3

4
ICDE Conf. On Data Eng

Data 
Eng. 
Bull

Data 
Engin
eering
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Complex Negative rules

Example

“two distinct author references on a single paper cannot
be the same person”

¬Author∗(x , i , y , j)⇐ Wrote(p, x , i), Wrote(p, y , j), i 6= j
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Recursive rules

Example

“Authors that do not share common coauthors are
unlikely to be duplicates”

¬Author∗(x , i , y , j)← ¬
(
Wrote(x , i ,_), Wrote(y , j_),

Wrote(x , p,_), Wrote(y , p′,_),

Author∗(x , p, y , p′)
)
.
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Clustering

Finding the best clustering

Given the entity reference tables D and dedupalog program Γ.
find the clustering C of D such that

• C |= Γhard; and

• the cost
Cost(C , Γ) =

∑
γ∈Γsoft

Cost(C , γ)

is minimal.

Here, Cost(C , γ) is the number of pairs in the clustering that γ is
not satisfied on C .

Complexity

NP-complete to decide whether there is a clustering below a
certain threshold.
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Example

Example
id title venue year
1 Cluster Aggregation ICDE 2005
2 Clustering Aggregations Conference on Data Eng 2005
3 Collective ER Data Eng Bull. 2007
4 Collective ER Data Engineering 2007

Paper*(id) Publisher*(p)

1

2 3

4
ICDE Conf. On Data Eng

Data 
Eng. 
Bull

Data 
Engin
eering

Perfect clustering
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Another Example

Example

Consider
R∗(x , y)↔ E (x , y)

where E is the graph shown below.

d

a b

c d

a b

c d

Entity reference table E !:

a
b
c
d

Cost of clustering C is two:

• d should belong the same cluster as c

• c should not belong to the same cluster as b.
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Correlation clustering

Definition

Given an undirected graph G = (V ,E ) with edge labels {+,−}.
• A correlation clustering C is a partitioning of the vertices in

V .

• A false positive edge is a −-labeled edge (v ,w) such that u
and v are clustered together in C.

• A false negative edges is a +-labeled edge (v ,w) such that
u and v are not clustered together in C

• The cost of C is defined as,

cost(C,G ) = |false positive edges|+ |false negative edges|

Problem

Find the correlation clustering of smallest cost.
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Label assignment

Idea:

With each dedupalog rule γ ∈ Γ, associate counting rules γc .

• Each pair of objects mayretrieve + or − from γc

Use majority voting to decide final label of pair of objects:

• If a pair received more +-labels than −-labels: Final label is
“+”

• If a pair received more −-labels than +-labels: Final label is
“−”

In this way, a graphs are obtained from D and Γ that are given as
input to correlation clustering problem.
(things are bit more complicated in the presence of recursive
rules)
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Correlation Clustering - Example

1

2

3

4

5

6 7
1

2

3

4

5

6 7

Initial graph

clustering with (cost=3)

+ labeled edges
—labeled edges

1

2

3

4

5

6 7

false negative 

false positive 
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Correlation Clustering algorithm

Problem is NP-hard in general ⇒ Approximation

Naive Algorithm

1 Function: region-growing (G)

2 return A clustering C

3 Solve a Linear Program (LP) for Correlation Clustering
4 Let w(ei ) be the (fractional weight of edge ei

5 Select a vertex v .
6 Neighborhoud V = {v}
7 while G 6= ∅ do
8 while condition is not met do
9 Keep adding neighbours of V to V

10 return V
11 Let ∆ be all vertices and edges adjacent to V from G
12 Let G := G \∆.
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Integer vs Linear Program formulation

The correlation clustering can be described as solving an integer
program:

minimize
∑

e∈E−(1− xe) +
∑

e∈E+ xe

subject to xe ∈ {0, 1}
xuv + xvw ≥ xuw

, xuv = xvu.

NP-hard to solve. Instead solve linear relaxation:

minimize
∑

e∈E−(1− xe) +
∑

e∈E+ xe

subject to xe ∈ [0, 1]
xuv + xvw ≥ xuw

, xuv = xvu.

PTIME to solve and SOLlp ≤ SOLip.

The weights of the solution of the linear relaxation are used to
measure how large a region can grow.



Entity Resolution

Introduction

Similarity measures
Distance-based

Token-based

Domain dependent

Three ER methods
Swoosh

Matching dependencies

Dedupalog

Conclusions

68

Guarantee of Region growing algorithm

The clustering C returned by region growing is at most a factor
O(log(E )) from the optimal solution.

Not a heuristic, but a true approximation algorithm.

Comparison of various correlation clustering algorithm [Elsner et al,

ILP-NLP’09]

See also tutorial at KDD: Correlation Clustering: from Theory to

Practice Francesco Bonchi, David Garcia-Soriano, Edo Liberty, KDD 2014
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Summary Dedupalog

• Declarative way of doing ER by means of clustering

• This is not the only way one could get clusterings.

• It is open whether other clustering techniques may give
better results.
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To conclude,

• Only scratched the surface of ER techniques

• Focus mainly on constraint-based approaches

• See VLDB 2012 Tutorial for other techniques [Entity

Resolution: Tutorial, by Lise Getoor, Ashwin Machanavajjhala]
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