Lecture 4

Entity Resolution

Are we the same?

Data Cleaning Course

Introduction

similarity measure

Distance-based Token-based

Domain dependent

Three ER methods
Swoosh
Matching dependencies

Dedupalog

Also known as

Duplicate detection
Match
Fuzzy match
Object consolidation
Entity clustering
Approximate match
Reference matching

Record linkage
Object identification
Deduplication
Identity uncertainty
Reference reconciliation
Merge/purge

Introduction

Distance-based
Token-based
Domain dependent

Three ER methods Swoosh Matching dependencies Dedupalog

Ironically, "Duplicate Detection" has many duplicates...

Definition

Duplicate detection is the discovery of **multiple representations** of the **same real-world object**

2

Entity Resolution

Problem 1

Representations are not identical.

Solution:

- Similarity measures
- Value- and record-comparisons
- Domain-dependent or domain-independent

Problem 2

Data sets are large.

Quadratic complexity: Comparison of every pair of records.

Solution:

- Algorithms that avoid all comparisons
- Partitioning
- Hash-based

Introduction

Similarity measures

Distance-based Token-based Domain dependent

Three ER methods Swoosh

Matching dependencies Dedupalog

Conclusions

3

Entity Resolution

milarity measures

Distance-based Token-based Domain dependent

Three ER methods

Swoosh Matching dependencies

Dedupalog

Conclusions

Problem 3

Interaction between objects

Solution:

Constraint-based reasoning

1

Entity Resolution

Outline

- **Similarity Measures**
- 2 Three (constraint-based) ER methods
- Conclusions

Distance-based Token-based

Domain dependent

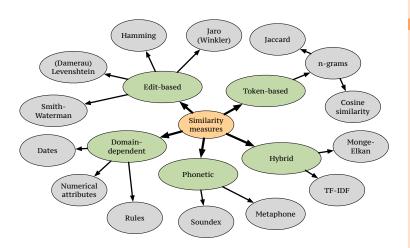
Three ER methods Swoosh

Matching dependencies Dedupalog

Distance-based Token-based Domain dependent

Swoosh Matching dependencies

The very first step in the Entity Resolution process to identify


At the basis of this lie similarity measures.

when to objects are similar.

Three ER methods

Dedupalog

Overview of similarity measures

Introduction

Similarity measures

Distance-based Token-based

Domain dependent

Three ER methods

Swoosh Matching dependencies Dedupalog

What is a similarity measure?

Denote by sim(x, y) the **similarity** between objects x and y

ullet x and y can be strings, numbers, tuples, objects, images, ...

Normalized when $sim(x, y) \in [0, 1]$:

- sim(x, y) = 1 for exact match
- sim(x, y) = 0 for "completely different" x and y.
- 0 < sim(x, y) < 1 for some approximate similarity.

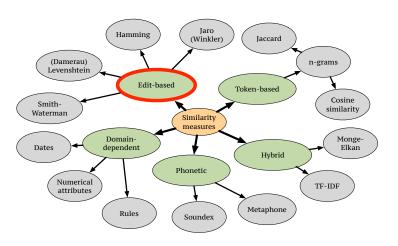
Example

Distance based Often used

$$sim(x, y) = 1 - dist(x, y)$$
 or $sim(x, y) = \frac{1}{dist(x, y)}$,

for distance function dist(x, y). ¹

Introduction


nilarity measures

Distance-based
Token-based
Domain dependent

Three ER methods
Swoosh

Matching dependencies
Dedupalog
Conclusions

¹Reflexive: dist(x, x) = 0, Positive: $dist(x, y) \ge 0$, Symmetric: dist(x, y) = dist(y, x), Triangular inequality: $dist(x, z) \le dist(x, y) + dist(y, z)$

Introduction

Similarity measures

Distance-based

Token-based Domain dependent

Three ER methods

Swoosh Matching dependencies

Dedupalog

Hamming distance

Definition

- Number of **positions** in which two strings (of equal length) differ; or
- Minimum number of substitutions required to change one string into the other; or
- Minimum number of errors that could have transformed one string into the other.

⇒ Used mostly for binary numbers and to measure communication errors.

Example

- Hamming distance = number of 1's in $x \times XOR y$.
- dist_{hamming}(peter,pedro) = 3.

Introduction

Similarity measur

Distance-based Token-based

Domain dependent

Three ER methods Swoosh Matching dependencies Dedupalog

Edit distances

Compare two strings based on individual characters.

Definition

- Minimal number of **edits** required to transform one string into the other.
- Edits: Insert, Delete, Replace (and Match)
- Give different cost to different types of edits
- Give different cost to different letters

Non-minimal edit cost

Consider

dist_{edit} (Jones, Johnson)

Delete "Jones". then insert "Johnson"

DDDDDIIIIIII = 12 edits.

Introduction

Distance-based Token-based

Domain dependent

Three ER methods Swoosh Matching dependencies Dedupalog

Levenshtein Distance

Definition

Minimum number of **character insertions**, **deletions**, **and replacements** necessary to transform s_1 into s_2 . (edit distance, unit cost for each edit).

Is computed using **dynamic programming**: Optimality principle: Best transcript of two substrings must be part of best overall solution

Levenshtein

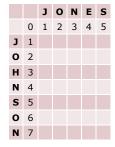
- Initalize matrix M of size $(|s_1|+1)\times(|s_2|+1)$
- ² Fill matrix M[i, 0] = i and M[j, 0] = j.
- 3 Recursion

$$M[i,j] = \begin{cases} M[i,j] & \text{if } s_1[i] = s_2[j] \\ 1 + \min\{M[i-1,j], M[i,j-1], M[i-1,j-1]\} & \text{otherwise} \end{cases}$$

4 **return** $M[|s_1|, |s_2|]$

Introduction

Similarity measu


Distance-based Token-based

Domain dependent

Three ER methods Swoosh Matching dependencies Dedupalog

Levenshtein Distance

$$M[i,j] = \begin{cases} M[i,j] & \text{if } s_1[i] = s_2[j] \\ 1 + \min\{M[i-1,j], M[i,j-1], M[i-1,j-1]\} & \text{otherwise} \end{cases}$$

		J	0	N	E	S
	0,	1	2	3	4	5
J	1	0	1	2	3	4
0	2	1	Ō.	. 1	2	3
Н	3	2	Y	1	2	3
N	4	3	2	1.	2	3
S	5	4	3	2	2.	2
0	6	5	4	3	3	3
N	7	6	5	4	4	4

ntroduction

Similarity measur

Distance-based Token-based

Domain dependent

Three ER methods
Swoosh
Matching dependencies
Dedupalog

Levenshtein similarity

Definition

$$\operatorname{sim}_{\mathsf{Levenshtein}}(s_1, s_2) = 1 - \frac{\operatorname{dist}_{\mathsf{Levenshtein}}(s_1, s_2)}{\max\{|s_1|, |s_2|\}}$$

Example

s_1	<i>s</i> ₂	distance	similarity	
Jones	Johnson	4	0.43	
Paul	Pual	2	0.5	
Paul Jones	Jones, Paul	11	0	

Introduction

limilarity measures

Distance-based Token-based

Domain dependent

Three ER methods Swoosh Matching dependencies

Dedupalog

Jaro Similarity

Specifically tailored towards **sharing of characters**:

Definition

Let m be the number of **matching characters** in s_1 and s_2 :

two characters x and y are matching if they are the same and not farther apart than

$$\lfloor \frac{\max\{|s_1|,|s_2|\}}{2} \rfloor - 1$$

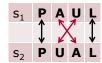
Let t be the number of matches that appear in a different order in s_1 and s_2 .

Then,

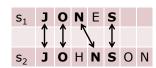
$$sim_{Jaro} = \frac{1}{3} (\frac{m}{|s_1|} + \frac{m}{|s_2|} + \frac{m - t/2}{m}).$$

Introduction

Distance-based


Token-based Domain dependent

Three ER methods Swoosh Matching dependencies


Dedupalog Conclusions

Jaro similarity: Example

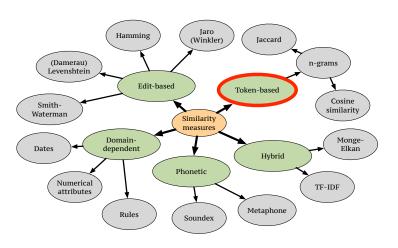
$$sim_{Jaro} = \frac{1}{3} (\frac{m}{|s_1|} + \frac{m}{|s_2|} + \frac{m - t/2}{m}).$$

$$\begin{array}{ll} m=4, & t=2/2=1\\ \text{sim}_{\text{Jaro}}=\frac{1}{3}(\frac{4}{4}+\frac{4}{4}+\frac{4-1}{4})\approx 0.92 \end{array}$$

$$m = 4$$
, $t = 0/2 = 0$
 $sim_{Jaro} = \frac{1}{3} (\frac{4}{5} + \frac{4}{7} + \frac{4-0}{4}) \approx 0.79$

Introduction

Similarity measure:


Distance-based Token-based

Domain dependent

Three ER methods Swoosh Matching dependencies

Dedupalog

Conclusions

Introduction

Similarity measures
Distance-based

Token-based

Domain dependent

Three ER methods Swoosh Matching dependencies

Dedupalog

N-grams

To translate words and text into a **set of small pieces**, then use similarity function between sets.

Definition

For texts, a k-gram is a **consecutive set of** k **words**. Sometimes, a k-gram also means just set of substrings of size k.

Example

Consider four documents:

```
D_1: I \text{ am Sam} D_3: I \text{ do not like green eggs and ham } D_2: Sam I \text{ am} D_4: I \text{ do not like them, Sam I am.}
```

```
1-grams of all documents: { I, am, Sam, do, not, like, eggs, and, ham, green, then}}
2-grams {{ {I, am}, {am, Sam}, {Sam, I}, {I do}, {do not}, {not like},{like green}, {green eggs}, {eggs and},{and ham}, {like them}, {them Sam}, {Sam I}}
```

Distance-based

Token-based Domain dependent

Three ER methods Swoosh Matching dependencies Dedupalog

Jaccard Similarity

Definition

Given two sets A and B:

$$sim_{Jaccard}(A, B) = \frac{|A \cap B|}{|A \cup B|}.$$

Example

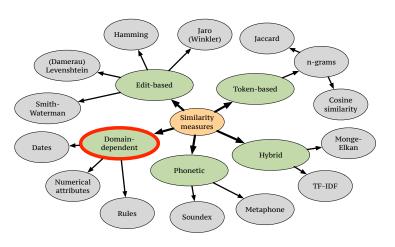
When applied to 2-grams of D_1 and D_2 :

$$D_1 := A = \{\{lam\}, \{amSam\}\}$$

 $D_2 := B = \{\{Saml\}, \{lam\}\}\}$

Then,

$$sim_{Jaccard}(D_1, D_2) = \frac{|A \cap B|}{|A \cup B|} = 1/3 \approx 0.333$$


Introduction

Distance-based

Token-based

Domain dependent

Three ER methods
Swoosh
Matching dependencies
Dedupalog

Introduction

Similarity measures
Distance-based

Token-based

Domain dependent

Three ER methods Swoosh Matching dependencies

Dedupalog

Numerical domains

Normalized absolute distance:

$$sim_{normabs}(n, m) =
\begin{cases}
1 - \left(\frac{|n-m|}{d_{max}}\right) & \text{if } |n-m| \le d_{max} \\
0 & \text{otherwise.}
\end{cases}$$

Example

If $d_{\text{max}} = \$1,000$. Then $sim_{\text{normabs}}(\$2000,\$2500) = 1 - 1/2 = 1/2$. Also $sim_{\text{normabs}}(\$200\,000,\$200\,500) = 1 - 1/2 = 1/2$

Percentage:

$$\operatorname{sim}_{\operatorname{perc}}(n,m) = \begin{cases} 1 - \left(100 \frac{|n-m|}{\max\{|n|,|m|\}p_{\max}}\right) & \text{if } 100 \frac{|n-m|}{\max\{|n|,|m|\}} \leq p_{\max} \\ 0 & \text{otherwise.} \end{cases}$$

Example

If $p_{\text{max}}=33\%$. Then $\sin_{\text{perc}}(\$2000,\$2500)=1-20/33\approx0.394$. Now, $\sin_{\text{perc}}(\$200\,000,\$200\,500)=1-0,25/33\approx0.993$.

Introduction

Distance-based
Token-based

Domain dependent Three ER methods

Swoosh
Matching dependencies
Dedupalog
Conclusions

Time and geo domains

- Compute difference in dates in terms of **number of days**, then apply similarity measure on numerical domain.
- Dates of birth can also be converted to age, again using measure on numerical domain.
- Geographical location: Map it again to a number (using some geographical projection); or use distance measures and derived similarity measure.

Introduction

Similarity measures
Distance-based
Token-based

Domain dependent

Three ER methods Swoosh Matching dependencies Dedupalog

Many more

There are many more similarity measures ...

See e.g., Tutorial [Record Linkage: Similarity Measures and Algorithms Nick Koudas, Sunita Sarawagi, Divesh Srivastava, SIGMOD 2006.]

In the following, I simply use " \asymp " to denote some similarity function...

Introduction

Distance-based
Token-based

Domain dependent

Conclusions

Three ER methods Swoosh Matching dependencies Dedupalog

Outline

- Similarity Measures
- Opening Three (constraint-based) ER methods
 - Swoosh
 - Matching dependencies
 - Dedudaplog
- Conclusions

Introduction

offiliarity measure

Distance-based Token-based

Domain dependent

Three ER methods

Swoosh

Matching dependencies

Dedupalog

Outline

- Similarity Measures
- 2 Three (constraint-based) ER methods
 - Swoosh
 - Matching dependencies
 - Dedudaplog
- Conclusions

Introduction

illillarity illeasu

Distance-based
Token-based
Domain dependent

Three ER methods

Swoosh

Matching dependencies

Dedupalog

Swoosh: A Generic Approach to Entity Resolution

 Developed in Stanford [Benjelloun, Omar and Garcia-Molina, Hector and Menestrina, David and Su, Qi and Whang, Steven Euijong and Widom, Jennifer (2008) Swoosh: a generic approach to entity resolution. The VLDB Journal]

- Very generic approach to ER:
 - functions for comparing and merging records as black-boxes
 - you can implement them however you want.
- Whenever these functions satisfy certain properties, however, you will end up with an efficient ER algorithm.

Introduction

Distance-based
Token-based
Domain dependent

Three ER methods

Swoosh

Matching dependencies Dedupalog

Swoosh: Inuitive Example

Example

tuple id	Name	Phone	E-mail
1	John Doe	235-2635	jdoe@email.com
2	J. Doe	234-4358	
3	John D.	234-4358	jdoe@email.com

Matching rule

$$\begin{aligned} \mathsf{Match}(i,j) \leftarrow & t_i[\mathsf{Name}] \asymp t_j[\mathsf{Name}] \\ & \lor \big(\big(t_i[\mathsf{Phone}] = t_j[\mathsf{Phone}] \big) \land \big(t_i[\mathsf{E-mail}] = t_j[\mathsf{E-mail}] \big) \big) \end{aligned}$$

- Tuples 1 and 2 match
- Merge tuples 1 and 2: New tuple 4:
 4 | John Doe | {235-2635, | jdoe@email.con
 234-4358}
- 3 tuples 3 and 4 match. Merge.
- 4 Repeat.

Introduction

Distance-based

Domain dependent

Three ER methods

Swoosh

Matching dependencies Dedupalog

Swoosh: Inuitive Example

Example

tuple id	Name	Phone	E-mail
1	John Doe	235-2635	jdoe@email.com
2	J. Doe	234-4358	
3	John D.	234-4358	jdoe@email.com

Matching rule:

$$\begin{aligned} \mathsf{Match}(i,j) \leftarrow & t_i[\mathsf{Name}] \asymp t_j[\mathsf{Name}] \\ & \vee \big(\big(t_i[\mathsf{Phone}] = t_j[\mathsf{Phone}] \big) \wedge \big(t_i[\mathsf{E-mail}] = t_j[\mathsf{E-mail}] \big) \big) \end{aligned}$$

- 1 Tuples 1 and 2 match
- Merge tuples 1 and 2: New tuple 4:

234-4358}

- 3 tuples 3 and 4 match. Merge.
- 4 Repeat.

Introduction

Distance-based

Token-based

Three ER methods

Swoosh

Matching dependencies Dedupalog

Example

tuple id	Name	Phone	E-mail
1	John Doe	235-2635	jdoe@email.com
2	J. Doe	234-4358	
3	John D.	234-4358	jdoe@email.com

Matching rule:

$$\begin{aligned} \mathsf{Match}(i,j) \leftarrow & t_i[\mathsf{Name}] \asymp t_j[\mathsf{Name}] \\ & \vee \big(\big(t_i[\mathsf{Phone}] = t_j[\mathsf{Phone}] \big) \wedge \big(t_i[\mathsf{E-mail}] = t_j[\mathsf{E-mail}] \big) \big) \end{aligned}$$

- 1 Tuples 1 and 2 match.
- 2 Merge tuples 1 and 2: New tuple 4:

- 3 tuples 3 and 4 match. Merge.
- 4 Repeat.

Introduction

Distance-based

Token-based Domain dependent

Three ER methods

Swoosh

Matching dependencies Dedupalog

Example

tuple id	Name	Phone	E-mail
1	John Doe	235-2635	jdoe@email.com
2	J. Doe	234-4358	
3	John D.	234-4358	jdoe@email.com

Matching rule:

$$\mathsf{Match}(i,j) \leftarrow t_i[\mathsf{Name}] \asymp t_j[\mathsf{Name}] \\ \lor \big(\big(t_i[\mathsf{Phone}] = t_j[\mathsf{Phone}] \big) \land \big(t_i[\mathsf{E-mail}] = t_j[\mathsf{E-mail}] \big) \big)$$

- 1 Tuples 1 and 2 match.
- 2 Merge tuples 1 and 2: New tuple 4:

- 3 tuples 3 and 4 match. Merge.
- 4 Repeat.

Introduction

Distance-based
Token-based

Domain dependent

Three ER methods

Swoosh

Matching dependencies
Dedupalog
Conclusions

• Nopour

Notation

Match function

Is a boolean function $\mu : \mathcal{D} \times \mathcal{D} \to \{\bot, \top\}$.

- $\mu(s,t)$ if and only if s and t are the same
- E.g., $\mu(s, t) = \top \text{ iff sim}(s, t) \ge \theta$.
- The match function is a black box

Merge function

Merge of s and t is denoted by $\mathfrak{m}(s,t)$

- Only defined for matching records
- The merge function is also a black box

Distance-based

Token-based Domain dependent

Swoosh

Matching dependencies Dedupalog

Merge closure

Closure of database under merge function \mathfrak{m}

Let \mathcal{D} be a database instance. Then the **merge closure** of \mathcal{D} , denoted by \mathcal{D}^{\star} is the smallest set of tuples such that

- $\mathcal{D} \subseteq \mathcal{D}^{\star}$; and
- for any $s, t \in \mathcal{D}^*$, $\mathfrak{m}(s, t) \in \mathcal{D}^*$.

The closure is the result of exhaustively applying the merge operation.

Properties

- Closure is unique :-)
- Can be infinite :-(

Not realistic

The closure will not be very practical ...

Introduction

Distance-based Token-based

Domain dependent

Three ER methods

Swoosh

Matching dependencies Dedupalog

Domination: Reducing the Closure...

Domination

A tuple s is **dominated** by tuple t if

- $\mu(s, t) = \top$ (they match); and
- $s \leq t$ (t holds more information that s)

Here, \prec is any **partial order** on tuples:

- <u> </u> is reflexive, transitive, and anti-symmetric
- Application/domain specific.

Example

We could assume that $t_1 \leq t_4$ and $t_1 \leq t_4$					
tuple id	Name	Phone	E-mail		
1	John Doe	235-2635	jdoe@email.com		
2	J. Doe	234-4358		so that	
3	John D.	234-4358	jdoe@email.com	SO tilat	
4	John Doe	{235-2635,	jdoe@email.com		
		234-4358}			
/ · · · · ·					

 $\mathfrak{m}(t_1, t_2)$ contains more information and dominates t_1 and t_2 .

Introduction

Distance-based

Token-based Domain dependent

Three ER methods

Swoosh

Matching dependencies Dedupalog

Instance Domination

We can lift domination between tuples to **domination on instances**:

Definition

Instance \mathcal{D}' dominates instance \mathcal{D} if every tuple in \mathcal{D} is dominated by a tuple in \mathcal{D}' .

Note that instance domination is

- reflexive, transitive
- not antisymmetric. Why? $t_1 \leq t_4$, then $t_4 \leq \{t_1, t_4\}$ and $\{t_4, t_1\} \leq t_4$.

Example

tuple id	Name			
1				
4				
dominates the original instance				

dominates the original instance.

Introduction

Distance-based

Token-based

Domain dependent

Three ER methods

Swoosh

Matching dependencies Dedupalog

Instance Domination

We can lift domination between tuples to **domination on instances**:

Definition

Instance \mathcal{D}' dominates instance \mathcal{D} if every tuple in \mathcal{D} is dominated by a tuple in \mathcal{D}' .

Note that instance domination is

- reflexive, transitive
- not antisymmetric. Why? $t_1 \leq t_4$, then $t_4 \leq \{t_1, t_4\}$ and $\{t_4, t_1\} \leq t_4$.

Example

Assuming	that $t_1 \leq t_2$	$t_1 \leq t_4$	
tuple id	Name		
1			
4			

dominates the original instance.

Introduction

Distance-based

Token-based

Domain dependent

Three ER methods

Swoosh

Matching dependencies Dedupalog

Instance Domination

We can lift domination between tuples to **domination on instances**:

Definition

Instance \mathcal{D}' dominates instance \mathcal{D} if every tuple in \mathcal{D} is dominated by a tuple in \mathcal{D}' .

Note that instance domination is

- reflexive, transitive
- not antisymmetric. Why? $t_1 \leq t_4$, then $t_4 \leq \{t_1, t_4\}$ and $\{t_4, t_1\} \leq t_4$.

Example

Assuming that $t_1 \leq t_4$ and $t_1 \leq t_4$				
tuple id	Name	Phone	E-mail	
1	John Doe	235-2635	jdoe@email.com	
2	J. Doe	234-4358		
3	John D.	234-4358	jdoe@email.com	
4	John Doe	{235-2635,	jdoe@email.com	
		234-4358}		

dominates the original instance.

Introduction

Distance-based

Token-based

Domain dependent

Three ER methods

Swoosh

Matching dependencies Dedupalog

Entity resolution according to Swoosh

Definition

Given an instance \mathcal{D} , an **entity resolution of** \mathcal{D} , denoted by $\mathsf{ER}(\mathcal{D})$ is a set of tuples such that

- $ER(\mathcal{D}) \subseteq \mathcal{D}^*$ (should be in \mathcal{D} 's merge closure)
- ER(\mathcal{D}) dominates \mathcal{D}^* (it carries at least as much information as the merge closure)
- It is the minimal set of tuples satisfying the previous two conditions.

The hope is that dominance ensures that $ER(\mathcal{D})$ is a finite set.

Assumptions on merge and match function will need to be made to ensure finiteness.

Introduction

Similarity measures
Distance-based

Token-based

Three ER methods

Swoosh

Matching dependencies Dedupalog

ICAR properties

Idempotence:

- for any tuple t, $\mu(t, t) = \top$ and $\mathfrak{m}(t, t) = t$.
- A record always matches itself, and merging it with itself still yields the same record.

Commutativity:

- for any tuples s and t, $\mu(s,t) = \mu(t,s)$ and if $\mu(s,t) = \top$ then $\mathfrak{m}(s,t) = \mathfrak{m}(t,s)$.
- Direction of match and merge is irrelevant

Associativity:

• for any tuples s, t and u such $\mathfrak{m}(\mathfrak{m}(s,t),u)$ and $\mathfrak{m}(s,\mathfrak{m}(t,u))$ exist, then

$$\mathfrak{m}(\mathfrak{m}(s,t),u)=\mathfrak{m}(s,\mathfrak{m}(t,u)).$$

Order of merge is irrelevant.

Representativity:

- for any tuple $u = \mathfrak{m}(s, t)$, if $\mu(v, s) = \top$ then also $\mu(v, u)$.
- Merging does not lose matches.

Introduction

Distance-based Token-based Domain dependent

Three ER methods

Swoosh

Matching dependencies
Dedupalog
Conclusions

Merge domination

When the match and merge functions satisfy the ICAR properties, there is a natural domination order.

Merge domination

Given two tuples s and t we say that s is **merge dominated** by t, denoted $s \le t$, if

- $\mu(s, t) = \top$; and
- $\bullet \ \mathfrak{m}(s,t) = t.$

It just means that s does not add information and can be replaced by t.

Introduction

Distance-based

Token-based

Domain dependent

Three ER methods

Swoosh

Matching dependencies Dedupalog

Monotonicity

Properties of merge domination

For any tuples s and t that match, it holds that

$$s \leq \mathfrak{m}(s,t)$$
 and $t \leq \mathfrak{m}(s,t)$.

 Merge record always dominates the records it was derived from

If $s \le t$ and s matches u then also t matches u.

Match function is monotonic

If $s \le t$ and s matches u, then $\mathfrak{m}(s, u) \le \mathfrak{m}(t, u)$.

Merge function is monotonic

If $s \le u$ and $t \le u$ and s and t match, then $\mathfrak{m}(s,t) \le u$.

Merge is "smallest" dominating tuple.

ntroduction

Distance-based

Token-based

Domain dependent

Three ER methods

Swoosh

Matching dependencies Dedupalog

Swoosh Guarantees

If ICAR properties are satisfied then

- 1 ER process is guaranteed to be finite
- 2 Records can be matched and merged in any order
- 3 Dominated records can be discarded anytime

That's what we wanted!

Introduction

Distance-based

Token-based Domain dependent

Three ER methods

Swoosh

Matching dependencies Dedupalog

R-Swoosh

```
Function: r-swoosh(\mathcal{D})
```

² return $ER(\mathcal{D})$.

```
1 D: 0
```

while $\mathcal{D} \neq \emptyset$ do $t_{\text{current}} := a \text{ tuple in } \mathcal{D}'$

```
Remove t_{\text{current}} from \mathcal{D}'
t_{\text{buddy}}:=\text{null}
```

for $t' \in ER(\mathcal{D})$ do

if $\mu(t', t_{\text{current}}) = \top$ then

/*Recall that μ can be based on matching rules!*/

if $t_{\text{buddy}} = \text{null then}$

Add $t_{current}$ to ER(\mathcal{D})

else

10

11

12

13

Add $\mathfrak{m}(t_{\text{current}}, t_{\text{buddy}})$ to $\text{ER}(\mathcal{D})$

 $t_{\text{buddy}} = t'$ and **ExitFor**

Remove t_{buddy} from ER(\mathcal{D}).

return $ER(\mathcal{D})$.

Distance-based Token-based Domain dependent

Swoosh

Matching dependencies Dedupalog

Conclusions

37

Swoosh - Conclusion

Very generic approach

Some optimizations and variants

- Smart ordering reduces comparisons
- F-swoosh: Uses hashing techniques on features
- Incremental F-Swoosh
- D-Swoosh: distributed ER

Please check Stanford Entity Resolution Framework for more information: http://infolab.stanford.edu/serf/

Introduction

Distance-based

Token-based

Three ER methods

Swoosh

Matching dependencies Dedupalog

Outline

- Similarity Measures
- 2 Three (constraint-based) ER methods
 - Swoosh
 - Matching dependencies
 - Dedudaplog
- Conclusions

Introduction

Distance-based

Token-based

Domain dependent

Three ER methods

Swoosh

Matching dependencies Dedupalog

Matching dependencies

- We have seen matching dependencies in the first lecture
- Introduced in a series of papers:
 - [Wenfei Fan, Shuai Ma, Nan Tang, Wenyuan Yu: Interaction between Record Matching and Data Repairing.. J. Data and Information Quality 4(4): 16:1-16:38 (2014)
 - [Wenfei Fan, Hong Gao, Xibei Jia, Jianzhong Li, Shuai Ma: Dynamic constraints for record matching. VLDB J. 20(4): 495-520 (2011)]
 - | Wenfei Fan, Xibei Jia, Jianzhong Li, Shuai Ma: Reasoning about Record Matching Rules. PVLDB 2(1): 407-418 (2009)]
- Semantics of matching dependencies further explored by Bertossi et al [Leopoldo E. Bertossi, Solmaz Kolahi, Laks V. S. Lakshmanan: Data Cleaning and Query Answering with Matching Dependencies and Matching Functions. Theory Comput. Syst. 52(3): 441-482 (2013)]

Introduction

Distance-based Token-based

Domain dependent Three ER methods

Matching dependencies Dedupalog

Conclusions

Swoosh

Matching dependencies

- Matching dependencies naturally fit in the Swoosh approach (as the merge and match function black boxes)
- When used for ER, they also can be equipped with a chase semantics.
 - We have seen examples of the chase in the previous lecture.

Introduction

Distance-based
Token-based
Domain dependent

Three ER methods

Matching dependencies

Dedupalog

Matching dependencies: Example

MD

"The similarities of phone and address indicate that the tuples refer to the same person, and the names should be matched."

Consider table P:

Name Phn		Addr	
John Smith	723-9583	10-43 Oak St.	
J. Smith	(750) 723-9583	43 Oak St. Ap. 10	

Here, 723-9583 \asymp (750) 723-9583 and 10-43 Oak St. \asymp 43 Oak St. Ap. 10.

A matching dependency capturing this cleaning policy:

$$P[\mathsf{Phn}] \times P[\mathsf{Phn}] \wedge P[\mathsf{Addr}] \times P[\mathsf{Addr}] \to P[\mathsf{Name}] \equiv P[\mathsf{Name}]$$

Introduction

Distance-based

Token-based

Domain dependent

Three ER methods Swoosh

Matching dependencies Dedupalog

Matching dependencies

MDs are rules of the form

$$\bigwedge_{i,j} R[A_i] \asymp_{i,j} S[B_j] \to \bigwedge_{k,\ell} R[D_k] \equiv S[E_\ell].$$

The left side captures a similarity condition on pairs of tuples, in relations R and S Abbreviation: $R[\bar{A}] \simeq S[\bar{B}] \to R[\bar{D}] \equiv S[\bar{E}]$.

Static interpretation:

• If antecedent is true for a pair of tuples, then the values $R[D_k]$ and $S[E_\ell]$ should be the same

Dynamic interpretation:

 Those values on the RHS should be updated to some (unspecified) common value ntroduction

Distance-based

Token-based Domain dependent

Three ER methods Swoosh

Matching dependencies

Dedupalog

Ingredients

To make sure that the MDs know how to fix the RHS, we can fit it into Swoosh:

- A set Σ of MDs
- for every attribute A with domain Dom(A):
 - a similarity relation $\simeq_A \subseteq \mathsf{Dom}(A) \times \mathsf{Dom}(A)$
 - a merge function \mathfrak{m}_A : $\mathsf{Dom}(A) \times \mathsf{Dom}(A) \to \mathsf{Dom}(A)$ which idempotent, commutative, and associative.

ntroduction

Distance-based

Token-based Domain dependent

Three ER methods

Matching dependencies Dedupalog

Conclusions

Enforcing MDs

MD Chase step

- lacktriangle Given, a pair of instances ${\cal D}$ and ${\cal D}'$
- MD $\varphi = R_1[X_1] \asymp R_2[X_2] \to R_1[A_1] \equiv R_2[A_2]$
- A pair of tuples s and t in \mathcal{D} such that $s[X_1] \times t[X_2]$ but $s[A_1] = a_1 \neq s[A_2] = a_2$
- Then, $\mathcal{D} \Rightarrow_{\varphi,s,t} \mathcal{D}'$ if \mathcal{D}' is the same as \mathcal{D} except that

$$s[A_1] = t[A_2] = \mathfrak{m}(a_1, a_2).$$

Clean Instance

A clean instance \mathcal{D}^{\prime} is the result of exhaustively applying MD chase steps:

$$\mathcal{D} = \mathcal{D}_0 \Rightarrow_{\varphi_1, s_1, t_1} \mathcal{D}_1 \Rightarrow_{\varphi_2, s_2, t_2} \mathcal{D}_2 \Rightarrow_{\varphi_1, s_3, t_3} \cdots \Rightarrow_{\varphi_k, s_k, t_k} \mathcal{D}'$$

and no rule can be applied anymore to \mathcal{D}' .

Introduction

Distance-based

Token-based

Three ER methods

Matching dependencies

Dedupalog

Guarantees of the Chase Process

Only ICA on matching function is required.

The process terminates after a finite number of steps, resulting in a clean instance.

If in addition $a \approx a'$ implies that $a \approx \mathfrak{m}(a, a')$ then

ICA assumptions

The process terminates after a finite number of steps, resulting in a unique clean instance.

Distance-based

Token-based Domain dependent

Three ER methods Swoosh

Matching dependencies Dedupalog

ER with Matching Dependencies

Implements black box of match in Swoosh in a declarative way

- Only conditions (ICA) on the merge function $\mathfrak m$ is required to guarantee a unique solution.
- This leads to a **very flexible** approach.

Introduction

Similarity measure
Distance-based

Token-based Domain dependent

Three ER methods

Matching dependencies Dedupalog

Entity Resolution

Outline

- Similarity Measures
- 2 Three (constraint-based) ER methods
 - Swoosh
 - Matching dependencies
 - Dedudaplog
- 3 Conclusions

Introduction

Distance-based

Token-based

Domain dependent

Three ER methods Swoosh

Matching dependencies

Dedupalog

Logic + Clustering

We next consider an approach that relates

Constraints (logic) + Clustering

It uses a **completely different approach** to do ER with constraints

[Arvind Arasu, Christopher Ré, Dan Suciu: Large-Scale Deduplication with Constraints Using Dedupalog. ICDE 2009: 952-963]

Distance-based

Token-based

Domain dependent

Three ER methods Swoosh

Matching dependencies Dedupalog

Example

Consider wrote(id, pos, author) table:

id	pos	Authors
1	1	A. Gionis
1	2	H. Manilla
1	3	P. Tsaparas
2	1	A. Gionis
3	1	L. Bhattacharya
4	2	L. Getoor

and PaperRefs(id,title,venue, year) table

id	title	venue	year
1	Cluster Aggregation	ICDE	2005
2	Clustering Aggregations	Conference on Data Eng	2005
3	Collective ER	Data Eng Bull.	2007
4	Collective ER	Data Engineering	2007

Introduction

Similarity measures

Distance-based

Token-based

Domain dependent

Three ER methods

Matching dependencies

Dedupalog

Example

First step: Identify Entity Reference Tables

These list on which attributes we may want to do ER.

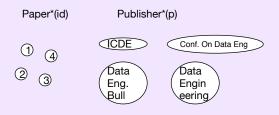
Second step: Associate binary (clustering) relations

```
Author*(id,pos,id',pos')
Publisher*(p,p')
Paper*(id,id)
```

These list pairs of objects that may be the same. Dedupalog will find a **clustering** of these objects.

Introduction

Distance-based Token-based Domain dependent


Three ER methods
Swoosh
Matching dependencies

Linking things together

Step 3: Use constraints

Relate the tables with the clustering relations using rules (constraints)

id	title	venue	year
1	Cluster Aggregation	ICDE	2005
2	Clustering Aggregations	Conference on Data Eng	2005
3	Collective ER	Data Eng Bull.	2007
4	Collective ER	Data Engineering	2007

Introduction

Distance-based
Token-based

Domain dependent

Three ER methods

Swoosh Matching dependencies

Soft-complete rules

Example

"papers with similar titles are likely duplicates"

$$\begin{aligned} \text{Paper*}(id,id') &\leftrightarrow & \text{PaperRefs}(id,t,_,_,_), \\ & & \text{PaperRefs}(id',t',_,_,_), \\ & & \text{TitleSimilar}(t,t') \end{aligned}$$

- Paper references whose titles appear in TitleSimilar are likely to be clustered together.
- Paper references whose titles do not appear in TitleSimilar are not likely to be clustered together.

Introduction

Distance-based Token-based

Token-based

Domain dependent

Three ER methods

Swoosh Matching dependencies

Soft-incomplete rules

Example

"papers with very similar titles are likely duplicates"

$$\begin{aligned} \text{Paper*}(id, id') \leftarrow & \text{PaperRefs}(id, t, _, _, _), \\ & \text{PaperRefs}(id', t', _, _, _), \\ & \text{TitleVerySimilar}(t, t') \end{aligned}$$

- Paper references whose titles appear in TitleVerySimilar are likely to be clustered together.
- This rule says nothing about paper references whose titles do not appear in TitleVerySimilar.

Introduction

Distance-based Token-based Domain dependent

Three ER methods Swoosh Matching dependencies

Dedupalog

Effect of rules

id	title	venue	year
1	Cluster Aggregation	ICDE	2005
2	Clustering Aggregations	Conference on Data Eng	2005
3	Collective ER	Data Eng Bull.	2007
4	Collective ER	Data Engineering	2007

Paper*(id)	Publisher*(p)	
① 🕜	(CDE)	Conf. On Data Eng
2 3	Data Eng. Bull	Data Engin eering

Introduction

Similarity measures
Distance-based

Token-based Domain dependent

Three ER methods Swoosh Matching dependencies

Dedupalog

Hard rules

Example

"the publisher references listed in PublisherEQ must be clustered together"

"the publisher references in PublisherNEQ must not be clustered together"

Publisher*
$$(x, y) \Leftarrow$$
 PublisherEq (x, y)
¬Publisher* $(x, y) \Leftarrow$ PublisherNEq (x, y)

First rule indicates a "must link", the second one a "cannot link".

Hard rules must be satisfied in any legal clustering

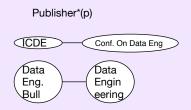
Distance-based

Token-based Domain dependent

Three ER methods Swoosh Matching dependencies

Dedupalog

Complex Hard rules


Paper*(id)

Example

"whenever we cluster two papers, we must also cluster the publishers of those papers"

Publisher*
$$(x, y) \Leftarrow Publishes(x, p_1)$$

Publishes (y, p_2) , Paper* (p_1, p_2) .

id	title	venue	year
1	Cluster Aggregation	ICDE	2005
2	Clustering Aggregations	Conference on Data Eng	2005
3	Collective ER	Data Eng Bull.	2007
4	Collective ER	Data Engineering	2007

Introduction

Distance-based

Token-based Domain dependent

Three ER methods Swoosh

Matching dependencies Dedupalog

Complex Negative rules

Example

"two distinct author references on a single paper cannot be the same person"

$$\neg \text{Author}*(x, i, y, j) \Leftarrow \text{Wrote}(p, x, i), \text{Wrote}(p, y, j), i \neq j$$

Introduction

Distance-based

Token-based Domain dependent

Three ER methods Swoosh

Matching dependencies

Dedupalog

Recursive rules

Example

"Authors that do not share common coauthors are unlikely to be duplicates"

$$\neg \text{Author*}(x, i, y, j) \leftarrow \neg (\text{Wrote}(x, i, _), \text{Wrote}(y, j_), \\ \text{Wrote}(x, p, _), \text{Wrote}(y, p', _), \\ \text{Author*}(x, p, y, p')).$$

Introduction

Distance-based
Token-based

Domain dependent

Three ER methods

Swoosh Matching dependencies

Clustering

Finding the best clustering

Given the entity reference tables $\mathcal D$ and dedupalog program Γ . find the clustering $\mathcal C$ of $\mathcal D$ such that

- $C \models \Gamma_{hard}$; and
- the cost

$$\mathsf{Cost}(C,\Gamma) = \sum_{\gamma \in \Gamma_{\mathsf{soft}}} \mathsf{Cost}(C,\gamma)$$

is minimal.

Here, $Cost(C, \gamma)$ is the number of pairs in the clustering that γ is not satisfied on C.

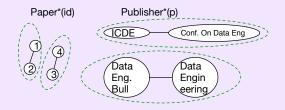
Complexity

NP-complete to decide whether there is a clustering below a certain threshold.

Introduction

Distance-based

Token-based Domain dependent


Three ER methods
Swoosh
Matching dependencies

Dedupalog

Example

Example

id	title	venue	year
1	Cluster Aggregation	ICDE	2005
2	Clustering Aggregations	Conference on Data Eng	2005
3	Collective ER	Data Eng Bull.	2007
4	Collective ER	Data Engineering	2007

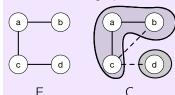
Perfect clustering

Introduction

Similarity measures
Distance-based
Token-based
Domain dependent

Three ER methods
Swoosh
Matching dependencies

Dedupalog


Another Example

Example

Consider

$$R*(x,y) \leftrightarrow E(x,y)$$

where E is the graph shown below.

Entity reference table *E*!:

Cost of clustering *C* is **two**:

- d should belong the same cluster as c
- *c* should not belong to the same cluster as *b*.

Introduction

Distance-based

Token-based Domain dependent

Three ER methods

Swoosh Matching dependencies Dedupalog

Correlation clustering

Definition

Given an undirected graph G = (V, E) with edge labels $\{+, -\}$.

- A **correlation clustering** C is a partitioning of the vertices in V.
- A **false positive edge** is a —-labeled edge (v, w) such that u and v are clustered together in C.
- A **false negative edges** is a +-labeled edge (v, w) such that u and v are not clustered together in C
- The **cost** of C is defined as,

cost(C, G) = |false positive edges| + |false negative edges|

Problem

Find the correlation clustering of smallest cost.

Introduction

Distance-based

Token-based Domain dependent

Three ER methods Swoosh Matching dependencies

Dedupalog

Label assignment

Idea:

With each dedupalog rule $\gamma \in \Gamma$, associate **counting rules** γ_c .

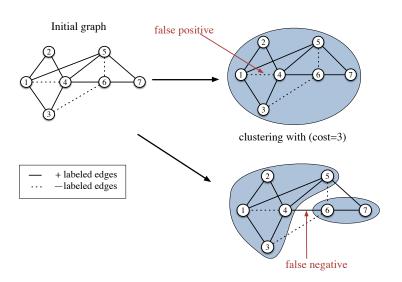
• Each pair of objects may retrieve + or - from γ_c

Use majority voting to decide final label of pair of objects:

- If a pair received more +-labels than --labels: Final label is "+"
- If a pair received more —-labels than +-labels: Final label is "_"

In this way, a graphs are obtained from $\mathcal D$ and Γ that are given as input to correlation clustering problem.

(things are bit more complicated in the presence of recursive rules)


ntroduction

Distance-based
Token-based
Domain dependent

Three ER methods Swoosh Matching dependencies

Dedupalog

Correlation Clustering - Example

Introduction

Similarity measures

Distance-based Token-based

Domain dependent

Three ER methods Swoosh

Matching dependencies

Dedupalog

Correlation Clustering algorithm

Problem is NP-hard in general \Rightarrow Approximation

Naive Algorithm

- ¹ **Function:** region-growing (*G*)
- $_{2}$ **return** A clustering \mathcal{C}
- 3 Solve a Linear Program (LP) for Correlation Clustering
- Let $w(e_i)$ be the (fractional weight of edge e_i
- 5 Select a vertex v.
- 6 Neighborhoud $V = \{v\}$
- 7 while $G ≠ \emptyset$ do

9

10

12

- while condition is not met do
 - Keep adding neighbours of V to V
 - return V
 - Let Δ be all vertices and edges adjacent to V from G
 - Let $G := G \setminus \Delta$.

Distance-based

Token-based

Domain dependent

Swoosh Matching dependencies

Dedupalog

Integer vs Linear Program formulation

The correlation clustering can be described as solving an **integer program**:

minimize
$$\sum_{e \in E^{-}} (1 - xe) + \sum_{e \in E^{+}} x_{e}$$
subject to
$$x_{e} \in \{0, 1\}$$
$$x_{uv} + x_{vw} \ge x_{uw}$$
$$x_{uv} = x_{vu}.$$

NP-hard to solve. Instead solve linear relaxation:

minimize
$$\sum_{e \in E^{-}} (1 - xe) + \sum_{e \in E^{+}} x_{e}$$
subject to
$$x_{e} \in [0, 1]$$

$$x_{uv} + x_{vw} \ge x_{uw}$$

$$x_{uv} = x_{vu}.$$

PTIME to solve and $SOL_{lp} \leq SOL_{ip}$.

The weights of the solution of the linear relaxation are used to measure how large a region can grow.

Introduction

Distance-based

Token-based Domain dependent

Three ER methods
Swoosh
Matching dependencies

Dedupalog

Guarantee of Region growing algorithm

The clustering $\mathcal C$ returned by region growing is at most a factor $O(\log(E))$ from the optimal solution.

Not a heuristic, but a true approximation algorithm.

Comparison of various correlation clustering algorithm [Elsner et al, ILP-NLP'09]

See also tutorial at KDD: Correlation Clustering: from Theory to Practice Francesco Bonchi, David Garcia-Soriano, Edo Liberty, KDD 2014

Introduction

Distance-based

Token-based Domain dependent

Three ER methods Swoosh Matching dependencies

Dedupalog

Summary Dedupalog

- Declarative way of doing ER by means of clustering
- This is not the only way one could get clusterings.
- It is open whether other clustering techniques may give better results.

Introduction

Similarity measur Distance-based

Token-based Domain dependent

Three ER methods Swoosh

Matching dependencies

Dedupalog

To conclude.

- Only scratched the surface of ER techniques
- Focus mainly on constraint-based approaches
- See VLDB 2012 Tutorial for other techniques [Entity Resolution: Tutorial, by Lise Getoor, Ashwin Machanavajjhala]

Introduction

Distance-based Token-based Domain dependent

Three ER methods

Swoosh Matching dependencies Dedupalog