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Sampling Basics

Consider the following data set, or “population”:

〈3,4,5,6,9,10,12,13,15,19〉.

We want to estimate:

SELECT SUM (R.a)
FROM R
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Sampling Basics

To do this, first draw a “sample”:

• Simulate rolling a 10-sided die n = 5 times (via a PRNG)
• If obtain a j on trial i, then ith item in sample is jth value
• Imagine I roll 〈6,3,5,3,9〉
• Then associated sample of R.a values is 〈10,5,9,5,15〉
• This is “simple random sampling with replacement”
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Sampling Basics

Then compute query result on sample

• This gives us 44
• Then scale up by a factor of 2
• Compensates for the fact our sample size is 5/10= 1/2 of the values
• This gives us 88 (real answer is 96)
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Random variables

This is the intuitive view...

But how good is this estimate?

Now we need some math

Denote by:
. ti the value of the ith item in the population
. Xi the random variable controlling the number of times ti appears in the sample
. (What’s a random variable?)

Example:
. Original data: 〈3,4,5,6,9,10,12,13,15,19〉
. Sample of R.a values is 〈10,5,9,5,15〉
. X6 = 1 and X3 = 2... why?
. The sixth item (t6 = 10) appears once
. The third item (t3 = 5) appears twice
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Our Estimate as a RV

We can write our sampling-based estimator as a RV:

Y = 2
N

∑
i=1

Xiti = 2 ∑
i∈sample

ti

with our sample,
Ŷ = 88

where:

• N = 10 is the population size
• “sample” denotes the set of distinct items in the sample
• Ŷ is the observed value for Y
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Expectation of Random variables

“Goodness” will generally be defined using the “expectation” of our esti-
mator

Where our “estimator” is the RV Y

Generally, we want E[Y ]≈ Q...

That is, we like our estimate to be correct on expectation

Or “unbiased”
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Expectation of Random variables

The “expected value” of a RV:

• The average value of an infinite number of trials over the RV

In general:

• E[X ] = x1Pr[X = x1]+ x2Pr[X = x2]+ x3Pr[X = x3]+ ...

• Or, E[X ] =
∫

∞

−∞
x f (x)dx if continuous

In our case, defined as:

• E[Xi] = ∑
5
j=0 j×Pr[Xi = j] = 1

2

• Note that each Xi is binomial
• Makes sense, as we select 1

2 of the items
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Estimators and Bias

Since:

• E[X +Y ] = E[X ]+E[Y ] (expectation is linear)
• E[cX ] = cE[X ] (here, c is a constant)

We have:

E[Y ] = E[2
N

∑
i=1

Xiti] = E
[ N

∑
i=1

Xiti
E[Xi]

]
=

N

∑
i=1

E
[ Xiti

E[Xi]

]
=

N

∑
i=1

E[Xi]ti
E[Xi]

=
N

∑
i=1

ti = Q (query result)
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Estimators and Bias

Note that E[Y ] = Q

Hence the estimator is “unbiased”

• This means it is correct on expectation
• Bias is one of two key types of estimation error...
• so unbiased is good!
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Accuracy

Unbiased is good...

But not the whole story

We also worry about variance, or variability of the estimate

How to compute variance?

• Will spend a lot of time on this question...
• But one classical approach is the “Central Limit Theorem” (CLT)
• Applies when each sample is i.i.d. (SRSWR is only standard i.i.d.
scheme)
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Central Limit Theorem

To apply the CLT:

• First compute the sample variance of sampled items; 17.2 =

1
4
(
(10−8.8)2+(5−8.8)2+(9−8.8)2+(5−8.8)2+(15−8.8)2)

• Note, 8.8 is the average of the five
• CLT says 1

n ∑
N
i=1 Xiti is Normal for large sample (n is sample size, N

population size)
• CLT also says if σ 2 is population variance (variance of ti’s), variance
of 1

n ∑
N
i=1 Xiti is σ 2/n

• So variance of Y/n = 2
n ∑

N
i=1 Xiti is 22σ 2/n
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CLT-based variance

So what’s the variance of Y?

• Variance of (Y/n)n is (22σ 2/n)52 or 102(17.2/5) = 344
• Note: only an approximation since 17.2 approximates population
variance
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How does this tell us how accurate we are?

• Since ±2σ contains approximately 95% of a Normal’s mass...

• And we’re unbiased

• Means we can guess answer is 88±2(344)
1
2 = 88±37
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A Math Model for Sampling

CLT doesn’t hold in every case

Requires i.i.d.

Can we develop tools that work with other, non i.i.d. schemes?

Yes!
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A Math Model for Sampling

In general, let a “sample” be a list of the form:

〈(t1,X1),(t2,X2), . . . ,(tn,Xn)〉

• ti is ith tuple, Xi number of times it appears in sample
• Example: in Bernoulli (“coin-flip”) sampling, Xi = 1 if obtain “heads”
on flip i

• Example: in SRSWR, Xi is the number of times i selected

An estimator Y is a function F applied to this list

Y = F
(
〈(t1,X1),(t2,X2), . . . ,(tn,Xn)〉

)
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A Math Model for Sampling

• In general,

F
(
〈. . . ,(t j−1,X j−1),(t j,0),(t j+1,X j+1), . . .〉

)
=

F
(
〈. . . ,(t j−1,X j−1),(t j+1,X j+1), . . .〉

)
• That is, F cannot “look at” a non-sampled item
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A Math Model for Sampling

• Accuracy generally has two parts

• (1) Bias:
bias(Y ) = E[Y ]−Q

• (2) Variance:

σ
2(Y ) = E[(Y −E[Y ])2] = E[Y 2]−E2[Y ]

• Bias + variance is small means high-quality
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Example

Consider the query:

SELECT SUM(r.extendedprice * (1.0 - r.tax))
FROM R as r
WHERE l.suppkey = 1234

• Set t j to be r.extendedprice * (1.0 - r.tax) if
r.suppkey = 1234

• Where r is the jth tuple in R

• Otherwise, if r.suppkey <> 1234 then t j = 0

• Then:
Q = ∑

j
t j
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Example

Imagine our data set is

〈t1, t2, . . . , t10〉= 〈3,4, . . . ,19〉

Take a sample (with replacement) of size 5... then let

Y = F
(
〈(t1,X1), . . . ,(t10,X10)〉

)
=

10
5

10

∑
j=1

t jX j

And

E[Y ] = E[
10
5

10

∑
j=1

t jX j] = 2
10

∑
j=1

t jE[X j] = 2
10

∑
j=1

t j
1
2
= Q

So our estimate is unbasied
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What about the variance?

σ2(Y ) = E[(Y −E[Y ])2] = E[Y 2]−E2[Y ]

Since E[Y ] = Q, we have E2[Y ] = Q2

What about E[Y 2]?

• A little more involved:

E[Y 2] = E
[(

2∑
j

t jX j)
)2]

= E
[
4∑

i
∑

j
tit jXiX j

]
= E

[
4∑

i
t2
i X2

i +8∑
i< j

tit jXiX j

]
= 4∑

i
(t2

i E[X2
i ])+8∑

i< j
tit jE[XiX j]

• We now have two summations...
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Variance

We now have two summations...

• One with E[X2
i ]... 2nd moment of binomial, or np+ n(n− 1)p2 =

1
2 +

1
5 =

7
10

• E[XiX j] is more non-standard, but is n(n−1)p2 = 1
5

• (note: why is E[XiX j] 6= E[Xi][X j]?)
• Plugging this into the above equation, we have:

E[Y 2] =
14
5 ∑

i
t2
i +

8
5 ∑

i< j
tit j
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Variance

And so the variance of Y , denoted as σ2(Y ), is:

σ
2(Y ) =

14
5 ∑

i
t2
i +

8
5 ∑

i< j
tit j−Q2

Plugging in the actual values for our dataset, we have:

σ
2(Y ) =

14
5
×1166+

8
5
×4025−9216 = 488.8

• 488.8 differs from 17.2× 100
5 = 344 via the CLT

• Why?
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Horvitz-Thompson Estimators

Most common sampling scheme:
. Each item appears at most once (Xi = 0 or 1)
. Where πi is probability that item i in the sample
. So E[Xi] = πi

. Often, πi = π j forall i, j (SRSWOR, for example)

Then the “Horvitz-Thompson” estimator of the sum is

Y = ∑
i∈sample

ti
πi
.

• Always unbiased
• Can be very accurate by giving high sampling probability to “im-
portant” items
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Variance of HT

• For a HT estimator Y ...

• Simple algebra gives us:

σ
2(Y ) = E[Y 2]−E2[Y ] = E

[(
∑

i

Xiti
πi

)2
]
−
(
∑

i
ti
)2

= E
[
∑

i
∑

j

Xiti
πi

X jt j

π j

]
−∑

i
∑

j
tit j

= ∑
i

∑
j

πi jtit j

πiπ j
−∑

i
∑

j
tit j = ∑

i
∑

j

(
πi j

πiπ j
−1
)

tit j.

• Note that πi j is the probability of BOTH Xi and X j being one

• Depends on sampling scheme...
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Estimating Variance of HT

In practice, need to estimate σ2(Y ) from the sample

• Note that σ 2(Y ) is a sum
• Over the cross-product of the dataset with itself
• So we can derive a HT estimator for σ 2(Y ):

σ̂
2(Y ) = ∑

i
∑

j

XiX j

πi j

(
πi j

πiπ j
−1
)

tit j = ∑
i, j∈sample

1
πi j

(
πi j

πiπ j
−1
)

tit j.
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Example: Estimating Variance of HT

Consider SRSWOR

We have the following data set:

〈3,4,5,6,9,10,12,13,15,19〉.

We want to estimate:

SELECT SUM (R.a)
FROM R

And we sample 〈3,5,6,15,19〉
. HT estimator for sum is 2(3 + 5 + 6+ 15 + 19) = 96
. What about variance?
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Example: Estimating Variance of HT

We previously had

σ̂
2(Y ) = ∑

i, j∈sample

1
πi j

(
πi j

πiπ j
−1
)

tit j.

What is πi j?

• Two cases: i = j, i 6= j

• If i 6= j, πi j =
5

10
4
9 =

2
9

• If i = j, πi j =
5

10 =
1
2
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From Bias and Variance To Accuracy

We’ve now extensively discussed bias and variance

How to translate to accuracy?

• Typically, we want a “confidence bound”
• Probabilistic guarantee of the form...
• “There is a p× 100% chance that the true answer to the query is
within the range l to h.”

Many ways to come up with confidence bounds...
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Central Limit Theorem

Technically, CLT applies only to i.i.d. case in limit

But often, we find that errors are normally distributed in practice

• So we assume that Y can be modeled as:

Y ≈ Q+N (0,σ 2(Y ))

• Then choose numbers lo and hi so that:

p =
∫ hi

lo
fN (x)dx

• where fN is the probability density function of N

• Then, there is a p×100% chance that lo≤ Q−Y ≤ hi
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Chebyshev Bounds

If CLT makes one uncomfortable, use distribution free bounds

• Chebyshev’s inequality implies for unbiased estimate Y ,

Pr[|Y −Q| ≥ p−
1
2σ(Y )]≤ p

• So there is a p×100% chance that Q is between Y − p−
1
2σ(Y ) and

Y + p−
1
2σ(Y )

• Much looser than CLT bounds!
• In our initial example, bounds go from 88±37 to 88±117.32
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Hoeffding Bounds

Some bounds don’t even require variance

• Hoeffding bounds applicable when Y = 1
n ∑i Xi

• and where the value of Xi ranges from lowi to hii
• Then,

Pr[|Y −E[Y ]| ≥ d]≤ 2exp(− 2d2n2

∑i(hii− lowi)2)

• But MUCH looser!
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Hoeffding Bounds

Recall we sampled 〈10,5,9,5,15〉

• Multiply by 10 to get 〈100,50,90,50,150〉
• Mean of this sequence is unbiased for Q

• Assume 50 and 150 bound numbers to sample
• Then approximate ∑i(hii− lowi)

2 by n(150−50)2 = 50,000
• Now, solve for d:

0.05 = 2exp(− 2d2n2

50,000
)

• Gives d = 192.06
• 88±192.06 is a 95% confidence interval
• Mostly useless!!
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What about bias?

Not all estimators unbiased

• Consider:

SELECT COUNT (*)
FROM R as r1, R as r2
WHERE r1.a BETWEEN r2.a - 3 AND r2.a + 3

• We draw a size n = 5 with-replacement sample of R

• Join the sample with itself

• Scale result by 1
n2π2 = 4

• Will be biased
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What about bias?

Why biased? Begin with E[Y ]

E[Y ] = E
[
4∑

j,k
I(t j.a BETWEEN tk.a−3 AND tk.a+3)X jXk

]
• I is the indicator function
• Now use I(t j.a, tk.a) as shorthand for I(t j.a BETWEEN tk.a−

3 AND tk.a+3)

E[Y ] = E
[
4∑

j
∑

k
I(t j.a, tk.a)

]
= E

[
4∑

j
I(t j.a, t j.a)X2

j +4×2 ∑
j<k

I(t j.a, tk.a)X jXk

]
= 4∑

j
I(t j.a, t j.a)E[X2

j ]+4×2 ∑
j<k

I(t j.a, tk.a)E[X jXk]
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What about bias?

But not correct on expectation

• Recall that E[X2
j ] =

7
10, E[X jXk] =

1
5

• So we have:

E[Y ] =
14
5 ∑

j
I(t j.a, t j.a)+

8
5 ∑

j<k
I(t j.a, tk.a)

• But Q = ∑ j I(t j.a, t j.a)+2∑ j<k I(t j.a, tk.a)

• So Q 6= E[Y ]
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How to handle bias?

Three ways:

• (1) Ignore it!
. Many estimators are biased
. But asymptotically unbiased
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How to handle bias?

Three ways:

• (2) Estimate and counter-act
. Useful if bias large
. But can result in large standard error ((bias2(Y )+σ2(Y ))1/2)
. If estimate for bias has high variance
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How to handle bias?

Three ways:

• (3) Estimate bias and use in bounds
. Rule-of-thumb is that for p≤ 0.95...
. Generally safe to replace std deviation with std error in bounds
. As long as the ratio of bias(Y ) to σ(Y )< 0.5
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That’s it for math foundations

Questions?
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