Drawing Samples from Databases

Chris Jermaine Rice University

So Far...

We have talked about how to USE samples

- But what sorts of samples are there?
- And how about how to actually produce them?
- This is what we will discuss in this lecture
- We begin by discussing the different "flavors" of sampling

Simple Random Sampling With Replacement

This is the classic form of sampling

- Note: samples are i.i.d.
- So classical theory like the CLT applies
- To draw a sample of size n from a relation R of size |R|:

Repeat n times:

Produce a random number r from 1 to $|\mathbf{R}|$, inclusive Obtain the rth item from the dataset Add it to the sample

SRSWR drawbacks

- Without-replacement sampling has lower variance than with replacement sampling for large samples
- Standard single-table HT estimator is:

$$Y = \frac{|\mathbb{R}|}{n} \sum_{j} X_{j} t_{j}$$

• Variance of standard single-table SUM estimator is:

$$\sigma^2(Y) = \frac{|\mathbf{R}|^2 \sigma^2(\mathbf{R})}{n}$$

Note this does not ever go to zero

Simple Random Sampling Without Replacement

This is the standard form of database sampling

• To draw a sample of size n from a relation R of size |R|:

```
Repeat n times:
```

While we have not added a new item: Produce a random number r from 1 to $|\mathbf{R}|$, inclusive If the rth item from the data not in the sample Obtain this item and add it to the sample

Simple Random Sampling Without Replacement

Main advantage over SRSWR is low variance at high sampling rate

• Standard HT estimator (single table) is identical:

$$Y = \frac{|\mathbb{R}|}{n} \sum_{j} X_{j} t_{j}$$

• However, variance is:

$$\sigma^{2}(Y) = \frac{|\mathbb{R}|(|\mathbb{R}| - n)\sigma^{2}(\mathbb{R})}{n}$$

• Note that this shrinks to zero with large sampling fraction

Bernoulli and Poisson Sampling

Idea is that we apply an independent test to each data item

Accept item j with probability p_j

In Bernoulli sampling

• p_j same over entire data set

In Poisson sampling

• p_j varies per tuple

To perform this type of sampling:

```
For j=1 to |R|: Generate a random number r from 0 to 1 If r is less than p_j, include tuple j in the sample
```

Bernoulli and Poisson Sampling

• Standard single-table HT SUM estimator takes the form:

$$Y = \sum_{i \in \text{sample}} \frac{t_i}{p_i}$$

• And variance is:

$$\sigma^{2}(Y) = \sum_{i} (\frac{1}{p_{i}} - 1)t_{i}^{2}$$

• With estimator:

$$\hat{\sigma}^2(Y) = \sum_{i \in \text{sample}} \frac{1}{p_i} (\frac{1}{p_i} - 1) t_i^2.$$

Bernoulli and Poisson Sampling

Relative to other schemes...

- ullet Can make Poisson variance very small relative to sample size... choose each p_i ...
- to minimize $\sigma^2(Y)$ subject to $\sum_i p_i =$ desired sample size
- Tends to choose large p_j for large t_j
- This leads to a "biased" sampling scheme, where large $|t_i|$ values chosen

Stratified Sampling

Basic idea

- All tuples first grouped into *m* classes
- Also called "strata"
- To obtain stratified sample, SRSWOR is performed on each strata
- Number of samples from the *i*th strata is n_i
- Where $\sum_{i=1}^{m} n_i = n$

Stratified Sampling

- To estimate SUM query result...
- Let R_i denote ith stratum
- Then define the HT estimator

$$Y_i = \frac{|\mathbf{R}_i|}{n_i} \sum_{t_j \in \mathbf{R}_i} X_j t_j$$

and

$$Y = \sum_{i=1}^{m} Y_i.$$

Stratified Sampling

• Since sampling processes are independent, variance is sum of individual variances:

$$\sigma^2(Y) = \sum_{i=1}^m \sigma^2(Y_i)$$

Neyman Allocation

Is one of the most classic results in survey sampling theory

- Prescribes a set of n_i values to minimize $\sigma^2(Y)$
- Choose each n_i so that:

$$n_i = \frac{n|\mathbf{R}_i|\boldsymbol{\sigma}^2(Y_i)}{\sum_{j=1}^m |\mathbf{R}_j|\boldsymbol{\sigma}^2(Y_j)}$$

- In practice, a small pilot sample can be used to estimate the $\sigma^2(Y_j)$
- Can produce a DRAMATIC variance reduction
- Under what circumstances could it be used in DBMS sampling?

OK, so how to sample from a database?

In practice, there are many ways

- Most DBs stored on block-based devices
 - ▶ So it may make sense to sample blocks, not tuples
- And sometimes, data stored in indexes
 - ▶ So we may need to use the index to sample
- Or else, we may simply scan the entire DB and produce a sample in a pass

How to do each of these?

Block-based vs. tuple-based sampling

In practice, most data organized into blocks

Only have random access at block level

- If you want one tuple from a block...
- You get the whole block

Means that if ≥ 1 tuple sampled from each block...

• Sampling as expensive as scanning full data set

Alternative: randomly choose full BLOCKS to sample

• Sample a block? Use ALL its tuples

Block-based sampling in detail

If we sample blocks, can use most of what we've developed with little modification

- Rather than letting $t_{j_1,j_2,...,j_m}$ refer to value after applying functions f, g, and h to concat of tuple j_1 , tuple j_2 , etc.
- $t_{j_1,j_2,...,j_m}$ instead refers to the total aggregate value by applying f, g, and h to the cross product of all of the tuples in the j_1 th block from the first relation, the j_2 th block from the second relation, and so on

Block-based sampling in detail

- ullet $B_j^{(i)}$ refers to the set of tuples in the jth block from the ith relation
- Let f'(t) = f(t) if g(t) = true and h(t) = gid; otherwise, f'(t) = 0
- Then let

$$t_{j_1,j_2,...,j_m} = \sum_{t_1 \in B_{j_1}^{(1)}} \sum_{t_2 \in B_{j_2}^{(2)}} \cdots \sum_{t_m \in B_{j_m}^{(m)}} f'(t_1 \bullet t_2 \bullet \cdots \bullet t_m).$$

- Also redefine $X_{j_1,j_2,...,j_m}$ to be the random variable that controls whether the sample contains block j_1 from relation 1, block j_2 from relation 2, and so on
- Our results of SPJGB queries hold without further modification!

So, should we just always sample blocks?

Makes a lot of sense in terms of I/O efficiency

- But are issues...
- You end up with a lot more data
- And in the extreme case all data on a block are correlated
- So you might burn a lot of CPU for little accuracy gain

Scan-based sampling

Fastest way to sampling data is to scan it

- Goal: for any $n \ge 1$
- \bullet A size n random sample of the file obtained
- After n tuples have been read
- Only the case if the file has been randomized
- Idea pioneered by Hellerstein, Haas, and Wang (SIGMOD 1997): "online aggregation"
- Attach a random bit string to each tuple, then sort (TPMMS)

SRSWOR Using a Reservoir

Classical problem:

- Unbounded stream of tuples
- Want to draw a SRSWOR of size *n* in one pass
- Classic algorithm for this is "reservoir sampling"

```
 \begin{array}{l} \textit{res} = \{\} \\ \textit{i} = 0 \\ \textbf{while} \text{ still data:} \\ \textit{i++} \\ \textbf{if } |\textit{res}| < \textit{n:} \\ \text{add new tuple to } \textit{res} \\ \text{otherwise:} \\ \text{add new tuple to } \textit{res} \text{ with probability } \textit{n/i} \\ \text{evicting a random existing tuple} \\ \end{array}
```

SRSWOR From a B+-Tree

If the tree is "ranked" this is easy

- In a ranked tree, each link to a child node as a tuple count
- So I have a buch of (ptr, cnt) pairs
- If I want a sample of size n from a leaf node, just sample normally
- If I want a sample from an internal node:

```
numsam[j] = 0 for j in 1 to numKids for i = 0 to n: choose child j with prob \frac{cnt_j}{\sum_{j'}cnt_{j'}} cnt_j-- numsam[j]++ for j in 1 to numKids recursively draw numsam[j] samples from the jth subtree
```

SRSWR from a B+-Tree w/o rank info

What if tree is not ranked?

- ▶ Idea (Olken and Rotem, 1989): pretend each tree is 100
- ▶ That is, get UB on the number of children in internal, leaf node
- \triangleright Call these values max_i , max_l
- ➤ Sampling procedure is again recursive
- ▶ Here's a one-at-a-time algorithm (can extend to batch)
- ▶ Note we add a new "reject and start over" which requires re-running from root

Leaf node:

```
Choose a value r from 1 to max_l
If < r items in leaf, reject and start over
Else, return rth item
```

Internal node:

```
Choose a value r from 1 to \max_i If < r items in IN, reject and start over Else, descend into rth subtree and run appropriate algorithm
```

That's it!

Questions?