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So Far...

We have talked about how to USE samples

• But what sorts of samples are there?
• And how about how to actually produce them?
• This is what we will discuss in this lecture
• We begin by discussing the different “flavors” of sampling
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Simple Random Sampling With Replacement

This is the classic form of sampling

• Note: samples are i.i.d.
• So classical theory like the CLT applies
• To draw a sample of size n from a relation R of size |R|:

Repeat n times:
Produce a random number r from 1 to |R|, inclusive
Obtain the rth item from the dataset
Add it to the sample

CMJ, Rice University 3



SRSWR drawbacks

• Without-replacement sampling has lower variance than with replace-
ment sampling for large samples

• Standard single-table HT estimator is:

Y =
|R|
n ∑

j
X jt j

• Variance of standard single-table SUM estimator is:

σ
2(Y ) =

|R|2σ 2(R)

n

• Note this does not ever go to zero
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Simple Random Sampling Without Replacement

This is the standard form of database sampling

• To draw a sample of size n from a relation R of size |R|:

Repeat n times:
While we have not added a new item:

Produce a random number r from 1 to |R|, inclusive
If the rth item from the data not in the sample
Obtain this item and add it to the sample
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Simple Random Sampling Without Replacement

Main advantage over SRSWR is low variance at high sampling rate

• Standard HT estimator (single table) is identical:

Y =
|R|
n ∑

j
X jt j

• However, variance is:

σ
2(Y ) =

|R|(|R|−n)σ 2(R)

n

• Note that this shrinks to zero with large sampling fraction
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Bernoulli and Poisson Sampling

Idea is that we apply an independent test to each data item

Accept item j with probability p j

In Bernoulli sampling

• p j same over entire data set

In Poisson sampling

• p j varies per tuple

To perform this type of sampling:

For j = 1 to |R|:
Generate a random number r from 0 to 1
If r is less than p j, include tuple j in the sample
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Bernoulli and Poisson Sampling

• Standard single-table HT SUM estimator takes the form:

Y = ∑
i∈sample

ti
pi

• And variance is:
σ

2(Y ) = ∑
i
(

1
pi
−1)t2

i

• With estimator:

σ̂
2(Y ) = ∑

i∈sample

1
pi
(

1
pi
−1)t2

i .
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Bernoulli and Poisson Sampling

Relative to other schemes...

• Can make Poisson variance very small relative to sample size...
choose each pi...
• to minimize σ 2(Y ) subject to ∑i pi = desired sample size
• Tends to choose large p j for large t j

• This leads to a “biased” sampling scheme, where large |ti| values
chosen
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Stratified Sampling

Basic idea

• All tuples first grouped into m classes
• Also called “strata”
• To obtain stratified sample, SRSWOR is performed on each strata
• Number of samples from the ith strata is ni

• Where ∑
m
i=1 ni = n
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Stratified Sampling

• To estimate SUM query result...

• Let Ri denote ith stratum

• Then define the HT estimator

Yi =
|Ri|
ni

∑
t j∈Ri

X jt j

• and
Y =

m

∑
i=1

Yi.
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Stratified Sampling

• Since sampling processes are independent, variance is sum of indi-
vidual variances:

σ
2(Y ) =

m

∑
i=1

σ
2(Yi)
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Neyman Allocation

Is one of the most classic results in survey sampling theory

• Prescribes a set of ni values to minimize σ 2(Y )

• Choose each ni so that:

ni =
n|Ri|σ 2(Yi)

∑
m
j=1 |R j|σ 2(Yj)

• In practice, a small pilot sample can be used to estimate the σ 2(Yj)

• Can produce a DRAMATIC variance reduction
• Under what circumstances could it be used in DBMS sampling?
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OK, so how to sample from a database?

In practice, there are many ways

• Most DBs stored on block-based devices
. So it may make sense to sample blocks, not tuples

• And sometimes, data stored in indexes
. So we may need to use the index to sample

• Or else, we may simply scan the entire DB and produce a sample in
a pass

How to do each of these?
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Block-based vs. tuple-based sampling

In practice, most data organized into blocks

Only have random access at block level

• If you want one tuple from a block...
• You get the whole block

Means that if ≥ 1 tuple sampled from each block...

• Sampling as expensive as scanning full data set

Alternative: randomly choose full BLOCKS to sample

• Sample a block? Use ALL its tuples
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Block-based sampling in detail

If we sample blocks, can use most of what we’ve developed with little
modification

• Rather than letting t j1, j2,..., jm refer to value after applying functions
f , g, and h to concat of tuple j1, tuple j2, etc.

• t j1, j2,..., jm instead refers to the total aggregate value by applying f ,
g, and h to the cross product of all of the tuples in the j1th block
from the first relation, the j2th block from the second relation, and
so on
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Block-based sampling in detail

• B(i)
j refers to the set of tuples in the jth block from the ith relation

• Let f ′(t) = f (t) if g(t) = true and h(t) = gid; otherwise, f ′(t) = 0

• Then let

t j1, j2,..., jm = ∑
t1∈B(1)

j1

∑
t2∈B(2)

j2

· · · ∑
tm∈B(m)

jm

f ′(t1 • t2 • · · · • tm).

• Also redefine X j1, j2,..., jm to be the random variable that controls
whether the sample contains block j1 from relation 1, block j2 from
relation 2, and so on

• Our results of SPJGB queries hold without further modification!
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So, should we just always sample blocks?

Makes a lot of sense in terms of I/O efficiency

• But are issues...
• You end up with a lot more data
• And in the extreme case all data on a block are correlated
• So you might burn a lot of CPU for little accuracy gain
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Scan-based sampling

Fastest way to sampling data is to scan it

• Goal: for any n≥ 1
• A size n random sample of the file obtained
• After n tuples have been read
• Only the case if the file has been randomized
• Idea pioneered by Hellerstein, Haas, and Wang (SIGMOD 1997):
“online aggregation”
• Attach a random bit string to each tuple, then sort (TPMMS)
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SRSWOR Using a Reservoir

Classical problem:

• Unbounded stream of tuples
• Want to draw a SRSWOR of size n in one pass
• Classic algorithm for this is “reservoir sampling”

res = {}
i = 0
while still data:

i++
if |res| < n:

add new tuple to res
otherwise:

add new tuple to res with probability n/i
evicting a random existing tuple
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SRSWOR From a B+-Tree

If the tree is “ranked” this is easy

• In a ranked tree, each link to a child node as a tuple count
• So I have a buch of (ptr,cnt) pairs
• If I want a sample of size n from a leaf node, just sample normally
• If I want a sample from an internal node:

numsam[ j] = 0 for j in 1 to numKids
for i = 0 to n:
choose child j with prob

cnt j
∑ j′ cnt j′

cnt j--
numsam[ j]++

for j in 1 to numKids
recursively draw numsam[ j] samples from the jth subtree
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SRSWR from a B+-Tree w/o rank info

What if tree is not ranked?
. Idea (Olken and Rotem, 1989): pretend each tree is 100
. That is, get UB on the number of children in internal, leaf node
. Call these values maxi, maxl

. Sampling procedure is again recursive

. Here’s a one-at-a-time algorithm (can extend to batch)

. Note we add a new "reject and start over" which requires re-running from root

Leaf node:
Choose a value r from 1 to maxl
If < r items in leaf, reject and start over
Else, return rth item

Internal node:
Choose a value r from 1 to maxi
If < r items in IN, reject and start over
Else, descend into rth subtree and run appropriate algorithm
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That’s it!

Questions?
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