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Abstract. Log manager is a key component of DBMS and is consid-
ered as the most prominent bottleneck in the modern in-memory OLTP
system. In this paper, by addressing two existing performance hurdles in
the current procedure, we propose a high-performance transaction log-
ging engine Laser and integrate it into OceanBase, an in-memory OLTP
system. First, we present a lock-free transaction logging framework to
eliminate the lock contention. Then we make theoretical analysis and
propose a judicious grouping strategy to determine an optimized group
time for different workloads. Experiment results show that it improves
1.4X-2.4X throughput and reduces more than 60% latency compared
with current methods.
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1 Introduction
Recent years have seen a shift in the design of high throughput OLTP systems:
from the conventional transaction engine to the widespread adoption of multi-
core memory system. To improve concurrency, many transaction engines focus on
eliminating fundamental bottlenecks, such as lock-based shared data structure,
concurrency control, centralized log manager etc. Among them, the log manager
is considered as the most prominent bottleneck due to centralized design and
dependence on I/O [2]. The state of art method[4] integrates three most widely
used techniques, i.e. parallel buffering, flush pipelining and group commit, to
form an efficient logging procedure and results show that the procedure can
significantly achieve better performance than the traditional logging approaches.

In this paper, we propose a high-performance transaction logging engine
called Laser. In particular, we observe two defects that limit the performance of
the existing procedure: (1)current approach depends on a lock-based method to
manage transaction log records, it involves many lock contentions and reduces
the CPU utilization as load increases[6]. (2)existing method uses a fixed group
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Fig. 1. Transaction commit processing in memory transaction Engine

commit strategy which cannot achieve a good performance when the workload
changes. To obtain better latency and throughput, We present a new lock-free
transaction logging framework with the help of a well-designed multi-group struc-
ture and CAS operation and propose an adaptive group commit where we make
theoretical analysis and propose a judicious grouping strategy to determine an
optimized grouping time when the workload varies. Then we implement these
methods and integrate them into the in-memory OceanBase OLTP system. Re-
sults show that it achieves 1.4X-2.4X better performance over the compared
methods in throughput as well as reduces more than 60% latency.

2 Related Work
The write-ahead logging(WAL) [5] is widely employed in database systems to
provide data durability and recovery. Compared to traditional system, the latest
OLTP systems have demonstrated significant performance improvement, howev-
er, the log manager is still prone to bottlenecks due to its centralized structure [2].

Many technologies are explored to reduce the overhead of logging. Johnson
et al. [4] identify four bottlenecks of the write-ahead logging named I/O-related
delay, log-induced lock contention, context switching and log buffer contention.
Parallel buffering [4] is used to reduce the log buffer contention. Group com-
mit [1] reduces the I/O-related delay by aggregating multiple log records into
one I/O operation. Pat Helland et al. [3] turns out that the database can set
group timer to minimize average response time, however it assumes the system
load is unchangeable and only examines the effect of grouping time on CPU

response time based on the traditional single thread system. Aether [4] utilizes
flush pipelining to reduce the overhead of context switching and integrates it
with parallel buffering and group commit to form an efficient logging procedure.

3 Preliminary
Transaction logging generally consists of two distinct steps: pre-logging and com-
mit logging. In the pre-logging step, each transaction fills its log records into an
in-memory log buffer. It first acquires a unique log sequence number(LSN) using a
lock to indicate its allocated space within the buffer, then copies the log records
into the log buffer. The usage of lock is to keep transactions acquiring their L-

SN in a monotonous serial order. In the second step, log records are physically
flushed into disk following the LSN order through some I/O operations.

Three mature techniques such as parallel buffering, flushing pipelining and
group commit have been adopted to optimize the procedure as illustrated in
Figure 1.It is non-trivial to combine the three techniques together in a logging
procedure. As log records are filled in parallel and must be written to disk in
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LSN order, log records of large LSN orders cannot be flushed until the front
transactions (transactions with small LSN orders) completed buffering. To this
end, the flushing thread has to identify a “safe” region (of offset) in the log buffer
for group commit. In the example, before notifying its region to flushing thread,
the work thread of T1 must wait until T0 releases its buffer space. To solve the
problem, the state of art [4] forms a linked list to release the buffer region in LSN

order. For log records, work threads acquire their LSN and enqueue themselves
into the list which protected by a lock. Each node in the list contains a “safe”
region which indicates the range of log records starting from it and ending at
the first successor that has not yet finish buffering. The “safe” region is figured
out in a delegated way. Once a work thread finishes filling log records, it first
abandons its node in the linked list and merges its offset into the range of its
predecessor. When a flushing thread triggers log flushes using group commit
policies, it first figures out buffer region of finished log records from the head of
linked list. Log records within the region can be flushed into disks.

4 Lock-free Transaction Logging Framework
Data Structure We use a buffer (denoted by B) with a constant size |B| to
store log records. The buffer is used in a round-robin manner. We rely on a
multi-group and a global offset of B (denoted by of ) to manage the logging.

The multi-group structure is formed by a sufficiently large array denoted by
{G0, G1 · · ·Gn}(n is large, e.g. n = 10000) and each group Gi is consisted of
a sextuple 〈 group statei, LSNi, si, ei, ni, fi 〉 as shown in Figure ??, where
group statei is the current state of the group, LSNi is used by work threads to
acquire LSN, si and ei are the logical start and end offset of the group in B, ni is
used to record the number of active transactions which do not complete filling in
the group, fi is used to indicate whether Gi is frozen. Details of their usages are
introduced subsequently. Each group has three possible states Available, Ready
and Durable. Available means the group is empty and the values( LSNi,si, ei,
ni, fi, ) of the group can be set. Ready indicates the work threads that join into
the group can start to acquire LSN and their log records are allowed to be filled
into B. Durable means that all the work threads in the group have completed
buffering their log records and can flush log records into disk. It is worth notice
that the multi-group is also used in a round-robin manner.

We also maintain a logical offset of to mark the start offset of transaction
log records which will be flushed(i.e. the start offset for the next flush). Notice
that we all use logical offset here(of/si/ei) and their physical address can be
easily corresponded as of%|B|, si%|B| and ei%|B| respectively.
Transaction Logging Procedure As shown in Figure 2, we adopt a lock-free
mechanism which maintains a global 128 bits structure Q =〈Gi, ri, oi 〉, where
Gi is the group used for acquiring LSN, ri and oi are used to record the relative
log serial number and offset in the Gi. When a work thread comes to acquire
a LSN, it first retrieves Q and generates a new Q by increasing ri = ri + 1,
oi = oi + |T | (where |T | is the size of log records) with a CAS operation. After
acquiring Q, it sets the ni = ni + 1. When Gi is ready, the work thread detects
if its log records can be buffered by comparing si + oi − of <= |B|. If the B has
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Fig. 2. Lock-Free Transaction Logging Framework

enough space, the work thread assigns the LSN of its transaction as LSNi +ri−1
and fills its log records with its offset. After completing buffering, it decreases
the value of ni by one, then it can turn to serve other transactions. When the
last work thread completes buffering, it changes the state of group from Ready

to Durable. A work thread confirms itself as the last thread if it finds ni=0 and
its frozen indicator fi=true assigned by a grouping thread.

Note that LSNi and si is required for the work thread. Both of them are
computed in a grouping thread which is used to construct groups. When the
condition of group commit is satisfied, the grouping thread generates a new Q
as 〈Gi+1, ri+1 = 0, oi+1 = 0〉 with a CAS operation. Then it sets the end offset
of the previous group Gi as ei = si + oi, fi = true. Next if the state of Gi+1

is Available, it assigns si+1 = ei, LSNi+1 = LSNi+ ri and makes the state into
Ready so that the next coming transaction can acquire LSN on Gi+1.

The flushing thread maintains a position indicator(denoted by seqL) to de-
termine which group will be written into disk with an I/O operation. When
seqL = i, if the state of Gi becomes Durable, the flushing thread flushes its
contained log records from (si%|B|, ei%|B|)(or (si%|B|, |B|) and (0, ei%|B|)) in-
to disk, then it increases of = ei, group statei = Available and increases seqL
to directing the next group for the next flush.

5 Load-Adaptive Group Committing

Observation In this section, we investigate the influence of different grouping
strategy on logging performance. We observe that the best grouping time(group
timer) is distinguishing for different loads as shown in Figure 3. We exploit the
observation by decomposing the executing time of transaction logging into five
main components (1) Wa: the average time that a transaction waits for a group
changing to Ready. (2) Wb: the average time that a transaction waits for its
group becoming Durable. (3) Wc: the average time that a transaction waits for
its log records to be flushed after its group becomes Durable. (4) Wd: the average
time that the flushing thread writes the log records into disk. (5) We: the rest
time spent for logging.

We breakdown the executing time when load throughput and log record size
are different in Figure 3. Consider load throughput, given a small one(320k tps),
group timer= 0.9ms have the largest latency where Wb takes the most time
cost, because the procedure provides a large time window of 0.9ms to make
threads acquire their LSNs and buffer their log records. In fact, Figure 3(c)
proves 0.15ms is a sufficient gap when the throughput is 320k. On the contrary,
0.15ms is not sufficient to sever when the throughput is high due to the smaller
timer generates more groups to be flushed in every seconds. Many transactions
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Fig. 3. Time Decomposition of Different Loads
in groups have to wait for the flushing thread, which causes a largest overhead of
Wc. Timer= 0.9ms significantly reduces the overhead as it lowers the generation
rate of group. Similarly, increasing the record size extends the time to flush a
group(Wd) in Figure 3(d). Therefore there is a largest overhead of Wc when
group timer is 0.15ms and record size is 160 byte. On the contrary, the larger
timer does not have the overhead of Wc.

In summary, when the load throughput or the record size grows, it involves
increasing overhead of Wc. Expand the grouping time increases cost of transac-
tions waiting for the group becoming durable(Wb), but it can reduce the overhead
of transactions in a group waiting for flushing(Wc).
Theoretical Analysis We further discuss the above conclusion through some
theoretical analysis. First, we demonstrate an I/O property between the log size
and its respect flushing time. Note that it is a general property for I/O operation
that well recognized by many data accessing test. Figure 4(a) demonstrates the
property: the amortized time for writing a larger size of log is less than a smaller
one. For example, when it writes 100kb log, it spends about 0.4ms, however, if
it only costs about 0.7ms to write 500kb (5 times large than 100kb) log. Based
on the property, we analyze the reason why increasing the grouping time can
reduce the overhead of Wc. Let λ and |T̄ | denote the load throughput and log
record size. Let D denotes the group timer and F(|Ḡ|) be the total time to write
log records where |Ḡ| is the size of grouping log that contained in one group for
flushing. Obviously, if F(|Ḡ|) > D, the procedure produces overhead of Wc since
the group requires to wait its prior group. |Ḡ| can be computed by the following
equation:

|Ḡ| =
{
|T̄ | ∗ D ∗ λ λ < 1/tCAS

|T̄ | ∗ D ∗ 1/tCAS λ ≥ 1/tCAS .

where tCAS is the constant time for a transaction to acquire LSN with the
atomic CAS operation and D ∗ 1/tCAS is the largest number of contained log
records. Therefore, when |T̄ | is constant, we adjust the value of D according
to the variation of λ to make sure F(|Ḡ|) ≤ D. Similarly, we can change the
D based on the variation of |T̄ | when λ is fixed. As shown in Figure 4(b), if
D = 0.15ms and |T̄ | = 10 byte when λ = 320k tps, F(|Ḡ|) = 0.158ms. This is
close to its group timer, thus there is almost not overhead of Wc. If the record
size increases, e.g. |T̄ | = 160 byte, the |Ḡ| enlarges and F(|Ḡ|) becomes 0.3ms
where F(|Ḡ|) > D and causes large overhead of Wc. Now consider using the
larger group timer(e.g. D = 0.9ms), though |Ḡ| increases several times as larger
D, but only smaller growth is generated on flushing time due to the I/O property.
When D = 0.9ms and |T̄ | = 160 bytes, F(|Ḡ|) is 0.35ms where F(|Ḡ|) << D
and avoids the overhead of Wc.
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To conclude, we find (1) increasing the grouping time will increase the time of
group being durable(Wb), but it reduces the overhead of Wc. (2) When the flushing
time is less than the group timer(F(|Ḡ|) < D), it eliminates or significantly
reduces the overhead of Wc. (3) When D is small, D is smaller than F(|Ḡ|), but
when D is large enough, D will be larger than F(|Ḡ|) due to the I/O property.
Grouping Strategy Based on the above conclusions, we propose our group
strategy as choosing the group timer which generates smallest cost of Wb by
eliminating the overhead of Wc. Formally, it is the minimum group timer D∗

that avoids Wc by satisfying the following equation:

D∗ ≥ F(|Ḡ|D∗). (1)

where |Ḡ|D∗ is the size of grouping log by utilizing D∗ as group timer.
To implement the grouping strategy, we monitor the flushing time Wd (where

Wd is closed to F(|Ḡ|D∗)). We turn the group timer based on the previous value
and the current flushing time in case of it changing too heavily at a time. In
particular, it is tuned as D = 1/2 ∗ D + 1/2 ∗ F(|Ḡ|D∗). D is tuned by the
grouping thread and after several times, D will become close to F(|Ḡ|D). If we
observe Wa increase heavily over a threshold τ (e.g. 0.1ms), it means the load
throughput has increased and the group is not available, we also increase D as
D = D + δ where δ is a constant time(e.g. δ = 2τ).

6 Experiment
Experimental Setup The experiments are conducted on a linux server with
268GB main memory and two Interl Xeon E5-2630@2.20GHZ processors, each
with 10 physical cores. We use RAID5 with flash-based write cache(FBWC) which
has high performance on I/O accesses.We implement Laser and the comparing
methods into OceanBase [7]. We compare Laser with (1) Baseline: the origin
transaction logging manager that Oceanbase adopts, it uses a single logging
thread to acquire LSN order and fills logs in sequence, and flushes the logs with
group commit. (2) Aether [4]: it utilizes parallel buffering, flush pipeline and
group commit to form a logging procedure as described in Section 3.We test
the methods on YCSB workload which is popular in evaluating the read/write
performance for a database system. We only utilize the update transaction and
the record size is from 10B to 160B.
Evaluation of Lock-free Transaction Logging First we compare the scal-
ability, peak throughput, latency and CPU utilization with Baseline, Aether and
Laser+Fixed timer by varying the number of work threads and clients. When we
vary one of parameters, the rest parameters are setting by default values where
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Fig. 5. Evaluation of optimized Transaction Logging

the number of threads is 20, the number of client is 3200, group timer= 0.3ms
and record size is 10 byte. The results are reported in Figure 5. We can see
Laser+Fixed timer always achieves the best throughput under all the situations,
which improves 1.2X-2X better performance.

Scalability. As shown in Figure 5(a), the performance of Laser+Fixed timer

increases nearly linearly when the number of work threads grows. The peak
throughput of Aether increases slowly when the number of work threads is bigger
than 12 due to acquiring LSN based-on lock which limits the scalability. Baseline
quickly becomes saturated when thread count is 8 since the single logging thread
becomes the critical bottleneck.

Client-side Throughput. Figure 5(b) shows the performance of Laser+Fixed

timer increases when the number of client varies however Aether increases very
slowly when client= 1600 and Baseline becomes saturated when client= 800.

Latency. Figure 5(c) shows Laser+Fixed timer always takes the lowest time when
the number of client grows, which improves the latency of Aether and Baseline

more than 45%.

CPU utilization. Figure 5(d) shows the utilization of Laser+Fixed timer increases
gently until the number of client equals 64. However, the cpu utilization of Aether

increases fleetly until the client count is 56 due to lock contention appears. The
CPU utilization of Baseline does not increase when the number of client equals
32 due to its single thread is saturate.

Evaluation of Adaptive Group Commit Next we compare the adaptive
grouping strategy with three fixed group timers in YCSB. We vary the number
of client to increase load throughput(each client generates 10k transactions per
second) and grow the record size where the default value of load is 320k. Results
are shown in Figure 5(e) and 5(f). Adaptive group commit always has lowest
latency compared to fixed group timer. For instance, when the record size is 10
bytes, the latency of timer 0.15ms, 0.3ms and 0.9ms is roughly 0.44ms, 0.64ms
and 1.21ms respectively, and the latency of Adaptive is 0.4ms. Meanwhile, the
adaptive group commit improves the peak throughput. Adaptive can serve for
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730k load throughput, and the timer 0.15ms, 0.3ms, 0.9ms only serve for 560k,
640k and 700k respectively.
Overall Performance Finally, we integrate the lock-free logging framework
and the adaptive group commit as Laser+Adaptive and evaluate the overall per-
formance. Results are reported in Figure 5. We can see (1)Laser+Adaptive offers
the best throughput, which improves 1.4X-2.4X better peak throughput than
Baseline and Aether. For example, in Figure 5(b), when the number of client e-
quals 3200, the peak throughput of Laser+Adaptive is about 730k, where the
peak throughput of Baseline, Aether and Laser+Fixed timer are 300k, 520k and
640k respectively. (2) Laser+Adaptive has the lowest latency when varying load
throughput which improves the latency by 60%. For example, in Figure 5(c),
when the number of client is 32, the latency of Baseline, Aether and Laser+Fixed

timer is 2.9ms, 1.1ms and 0.6ms respectively, and Laser+Adaptive is nearly 0.4ms.

7 Conclusion
In this paper, we propose an optimized transaction logging engine by proposing
a new lock-free transaction logging to improve scalability based on a designed
multi-group structure and CAS operation, and presenting a judicious group-
ing strategy which economizes the running time of logging for varied workload
through some theoretical analysis. Implementation in Oceanbase and experimen-
t results show the new logging engine can reduce more than 60% latency and
achieve 1.4X-2.4X better throughput compared with existing methods.
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