
Sliding Window Top-K Monitoring over
Distributed Data Streams

Zhijin Lv1, Ben Chen1, and Xiaohui Yu1,2 ?

1 School of Computer Science and Technology Shandong University, Jinan,
Shandong, China, 250101

2 School of Information Technology, York University, Toronto, ON, Canada, M3J 1P3
allen3jin@163.com, CBStubborn@163.com, xyu@sdu.edu.cn

Abstract. The problem of distributed monitoring has been intensively
investigated recently. This paper studies monitoring the top k data ob-
jects with the largest aggregate numeric values from distributed data
streams within a fixed-size monitoring window W , while minimizing com-
munication cost across the network. We propose a novel algorithm, which
reallocates numeric values of data objects among distributed monitor-
ing nodes by assigning revision factors when local constraints are vio-
lated, and keeps the local top-k result at distributed nodes in line with
the global top-k result. Extensive experiments are conducted on top of
Apache Storm to demonstrate the efficiency and scalability of our algo-
rithm.

Keywords: Data Stream, Distributed Monitoring, Top-K Query, Stream
Processing

1 Introduction

The prior studies for distributed top-k query [5, 7] focus on providing results
to one-time top-k queries in distributed settings. These studies are not suit-
able to continuously query top-k result over distributed data streams. In this
paper, we study a new problem of distributed top-k monitoring, which is contin-
uously querying the top k data objects with the largest aggregate numeric values
over distributed data streams within a fixed-size monitoring window. Each data
stream contains a sequence of data objects associated with numeric values, and
the aggregate numeric value of each data object is calculated from distributed
data streams. The continuous top-k query we studied is restricted to the most
recent portion of the data stream, and the numeric values of data objects are
changed correspondingly as the monitoring window slides.

The study of distributed top-k monitoring is significant in a variety of ap-
plication scenarios, such as network monitoring, sensor data analysis, web usage
logs, and market surveillance. The purpose of many applications tends to track
the exceptionally large (or small) numeric values relative to the major numeric

? Corresponding author.

values of data objects. For example, in the field of traffic flow monitoring, it is
necessary to continuously monitor the top k largest number of road traffic within
the last 15 minutes in order to monitor the traffic jams in time. Another exam-
ple, consider a system that monitors a large network for distributed denial of
service (DDoS) attacks. The DDoS attacks may issue an unusually large number
of Domain Name Service (DNS) lookup requests to distributed DNS servers from
a single IP address. Hence, it is necessary to monitor the DNS lookup requests
with potentially suspicious behavior. In this case, the monitoring infrastructure
continuously reports the top k IP addresses with the largest number of requests
at distributed servers in recent time. Since requests are frequent and rapid at dis-
tributed DNS servers, the solution of forwarding all requests to a central location
and processing them is infeasible, incurring a huge communication overhead.

The major challenge of our top-k monitoring problem is numeric values of
data objects varying independently at distributed nodes. Tracking the top k data
objects with the largest aggregate numeric values from distributed nodes results
in huge communication overhead, because the global top-k result is affected
by local changes of data objects at distributed nodes. It is imperative to find
solutions that can effectively monitor the global top-k result, while minimizing
communication cost across the network.

Existing algorithms for distributed top-k query such as the Threshold Algo-
rithm [7] focus on efficiently providing results to one-time top-k queries. Though
distributed top-k monitoring could be implemented by repeatedly executing
one-time query alogrithms, it is useless to execute query if the top-k result re-
mains unchanged. These algorithms do not include mechanisms for detecting the
changes of top-k result, incurring unnecessary communication overhead. Most of
solutions proposed for sliding window top-k monitoring [14, 17] are inappropri-
ate to our monitoring problem, because their ranking function is based on the
dominance relationship of data objects, rather than the aggregate numeric values
from distributed data streams. Babcock and Olston present an original algorithm
for distributed top-k monitoring [3], which maintains arithmetic constraints at
distributed data sites to ensure that the provided top-k answer remains valid.
Their algorithms assume that a single node may violate constraints each time,
which is unrealistic. Moreover, it is not suitable to the case of sliding window,
which focuses on the impact of recent data objects.

For continuous data monitoring, we adopt a time-based sliding window model
[14], where the data objects generated within W time-stamps from the current
time-stamp are target for monitoring. In this paper, we consider a model in which
there is one coordinator node C and a set of m distributed nodes N connected
to the coordinator node as shown in Fig. 1.

The coordinator node tracks the global top-k result and assigns constraints to
each monitoring node, at which local top-k result should be in alignment with the
global top-k result. Each monitoring node receives data objects from an input
stream and detects the potential violations of local constraints whenever the
window slides. When local constraints are violated at some monitoring nodes,
it is necessary to send the violated data objects and their numeric values to

N1

C

N2 N3 Nm. . .Monitoring Nodes

Coordinator Node

Data Streams

Data Object

S1 S2 S3 Sm

Time Window Size

Fig. 1. Sliding Window Distributed Monitoring Architecture

the coordinator node. Then, the coordinator node tries to resolve the violations,
called partial resolution. If the global constraint is satisfied by assigning new
local constraints to the violated nodes, then the global top-k result remains
valid. Otherwise, the coordinator node requests all distributed nodes for current
numeric values of violated objects to determine whether the global constraint
is still satisfied. We refer to this process as global resolution, which does not
always occur.

We implement our distributed top-k algorithm on top of Apache Storm [1],
an open-source distributed stream processing platform, on which we conduct
extensive experiments to evaluate the performance of our solutions.

Our main contributions can be summarized as follows.

– We investigate the problem of sliding window top-k monitoring over dis-
tributed data streams. To the best of our knowledge, there is no prior work
regarding this.

– We propose a novel algorithm for top-k monitoring over distributed data
streams, which achieves a significant reduction in communication cost.

– We implement our algorithms on top of Apache Storm, and conduct exten-
sive experiments to evaluate the performance of our algorithms with real
world data, which have demonstrated the efficiency and scalability of our
algorithms.

The rest of the paper is organized as follows. Section 2 reviews previous
work on monitoring over distributed data streams. Section 3 formally defines
the top-k monitoring problem studied in this paper. We describe our top-k mon-

itoring algorithm in detail in Section 4. Section 5 experimentally evaluates the
performance of our algorithms. Finally, we conclude the paper in Section 6.

2 Related Work

Prior work on monitoring distributed streams can be classified into two cate-
gories. One category is monitoring functions over the union of distributed data
streams, and another is monitoring a ranking function, which is based on the
dominance relationship of data objects over distributed data streams.

In the first category, algorithms have been proposed for continuous monitor-
ing of sums and counts [10], heavy hitters and quantiles [18], and ratio queries
[9]. Sharfman et al. [16] present a geometric monitoring (GM) approach for effi-
ciently tracking the value of a general function over distributed data relative to a
given threshold. Followup work [8, 11, 13] proposed various extensions to the ba-
sic method. Recently, Lazerson et al. [12] presented a CB (for Convex/Concave
Bounds) approach, which is superior to GM in reducing computational complex-
ity, by several orders of magnitude in some cases. Cormode et al. [6] introduced
the Continuous Monitoring Model focusing on systems comprised of a coordi-
nator and n nodes generating or observing distributed data streams. The goal
shifts to continuously compute a function depending on the information available
across all n data streams and a dedicated coordinator.

There are also plenty of works in the second category. These works study the
monitoring problem with essentially different semantics compared to the first
category. Mouratidis et al. [14] proposed an efficient technique to compute top-k
queries over sliding windows. They make an interesting observation that a top-k
query can be answered from a small subset of the objects called k-skyband [15].
Existing top-k processing solutions are mainly based on the dominance property
between data stream. The dominance property states that object Oa dominates
object Ob iff Oa has a higher score than Ob. Amagata et al. [2] presented al-
gorithms for distributed continuous top-k dominating query processing, which
reduces both communication and computation costs. Unfortunately, their algo-
rithms are inappropriate for the top-k monitoring problem we studied.

Further problems related to our distributed top-k monitoring are distributed
one-time top-k queries [4, 5, 7]. Fagin et al. [7] examined the Threshold Algorithm
(TA) and considered both exact answers and approximate answers with relative
error tolerance. TA goes down the sorted lists in parallel, one position at a
time, and calculates the sum of the values at that position across all the lists.
the sum of the values is called “threshold”. TA stops when it finds k objects
whose values are higher than the “threshold” value. Cao et al. [5] proposed
an efficient algorithm called “Three-Phase Uniform Threshold” (TPUT), which
reduces network bandwidth consumption by pruning away ineligible objects, and
terminates in three round-trips regardless of data input. However, these studies
are interested in algorithms that can obtain the initial top-k result efficiently
and provide top-k result to one-time queries. Our study focuses on monitoring
whether the top-k result have changed after an initial answer has been obtained.

3 Problem Definitions

Now we more formally define the problem studied in this paper. As described
above, there is one coordinator node C and m distributed monitoring nodes
N1, N2, ..., Nm. Each monitoring nodeNj continuously receives data records from
an input stream. Collectively, the monitoring nodes track a set O of n logical
data objects O = {O1, O2, ..., On}. Each data object is associated a numeric
value within the current monitoring window. The numeric value of each data
object is updated at distributed nodes as the monitoring window slides. For each
monitoring node Nj , we define partial numeric values C1,j(t), C2,j(t), ..., Cn,j(t)
representing node Nj ’s view of the data stream Sj within monitoring window
W at time t, where

Ci,j(t) = |{Ot′

i ∈ Sj | t− t′ ≤W}|. (1)

The aggregate numeric value of each object Oi from distributed monitoring
nodes is defined to be Ci(t) =

∑
1≤j≤m Ci,j(t). Tracking Ci(t) exactly requires

alerting the coordinator node every time data object Oi arrives or expires, so the
goal is to track Ci(t) approximately within an ε-error. The coordinator node is
responsible for tracking the top k data objects within a bounded error tolerance.
We define the approximate top-k set maintained by the coordinator node as T ,
which is considered valid if and only if:

∀Oa ∈ T ,∀Ob ∈ O − T : Ca(t) + ε ≥ Cb(t) (2)

where ε ≥ 0 is an user-specified approximation parameter. If ε = 0, then the
top-k set is exact, otherwise a corresponding degree of error is permitted in the
top-k set. The goal of our approach is to provide an approximate top-k set that
is valid within an ε-error in the case of sliding window, while minimizing the
overall communication cost to the monitoring infrastructure.

3.1 Revision Factors and Slack

We realize that the global top-k set is valid, if distributed monitoring nodes have
the same top-k set locally. Since the actual local top-k set at distributed moni-
toring nodes may be differ from the global top-k set, we use revision factors,
labeled δi,j , to reallocate the numeric values of data object Oi to monitoring
node Nj to satisfy the following local constraint:

∀Oa ∈ T ,∀Ob ∈ O − T : Ca,j(t) + δa,j ≥ Cb,j(t) + δb,j (3)

In addition, the coordinator node maintains partial revision factors of data ob-
jects as global slack, labeled δi,0. To ensure correctness, the sum of revision
factors for each data object Oi should satisfy:

∑
0≤j≤m δi,j = 0.

In order to reallocate numeric values of data objects among nodes, it is
necessary to compute additional slacks of data objects at each node. We define
resolution set which contains data objects from global top-k set T and all violated

objects as R. Our algorithm selects the maximum values Pj of data object not
in the resolution set R as a baseline for computing additional slacks of data
objects at each node Nj :

Pj = max
Oi∈O−R

(Ci,j(t) + δi,j) (4)

Thus, the overall slack Si for each data object Oi from the resolution set R
is given by:

∀Oi ∈ R : Si =
∑

1≤j≤m

(Ci,j(t)− Pj) = Ci(t)−
∑

1≤j≤m

Pj (5)

It is important to reallocate the overall slack of data objects among the coor-
dinator node and distributed monitoring nodes. If the slack is tight at monitoring
node, the violation of local constraints would be frequent. However, smaller slack
at coordinator node results in higher probability of violation of global constraints.
The optimum slack allocation polices balances these two costs.

3.2 Sliding Window Unit

…
sexp sliding window unit si

Monitoring Window sliding

snew

Fig. 2. Sliding Window Unit Structure

In the sliding window scenario, distributed monitoring nodes track numeric
values of data objects within the monitoring window W . Based on the arrival or-
der of each object in W , the data objects in window W could be partitioned into
several small window unit s0, s1, ..., sl−1 (l = W

w). The size of sliding window unit
w is specified according to the actual application scenario. Small window unit is
more suitable for near real-time applications, but incurring more communication
and computation costs.

As shown in Fig 2, the monitoring window W slides, whenever a new sliding
window unit snew has been created and the expired window unit sexp is removed.
Thus, the partial numeric values Ci,j(t) of each data object Oi at monitoring
node Nj updates within the new monitoring window W ′ (W ′ = W+snew−sexp).
Obviously, the changes of data objects may violate the current local constraints.

4 Top-K Monitoring Algorithm

We now describe our algorithm in detail for sliding window top-k monitoring
over distributed data streams. At the outset, the coordinator node initializes the
global top-k set by running an efficient algorithm for one-time top-k queries,
e.g. TPUT algorithm [5]. Once the global top-k set T has been initialized, the
coordinator node C sends a message containing T and initial revision factors
δi,j = 0 corresponding to each monitoring node Nj . Upon receiving this message,
the monitoring node Nj creates local constraint (3) from T and revision factors
to detect potential violations due to local changes of data objects.

If one or more local constraints are violated, the global top-k set T may
have become invalid. We use a distributed process called resolution algorithm
to determine whether current top-k set is still valid and resolve the violations if
not.

4.1 Resolution Algorithm

Resolution algorithm is initiated if one or more local constraints are violated at
some monitoring nodes NR. Our resolution algorithm consists of three phases,
and the third phase does not always occur.

Algorithm 1 Partial Resolution Algorithm

Input: T , δi,j , {Rj}, {Ci,j(t)}
Output: succeed or failed

1: for ∀Nj ∈ NR do
2: boundj ← max(Ci,j(t) + δi,j), Oi ∈ Rj − T //find the max value of violated

data object at each violated node.

3: /* try to reallocate the numeric value of Oi ∈ T among violated nodes to resolve
violation of constraints */

4: for ∀Oi ∈ T do
5: slacki ← δi,0
6: for ∀Nj ∈ NR do
7: usedi ← boundj − (Ci,j(t) + δi,j)
8: slacki ← slacki − usedi
9: bound0 ← max(δi,0), Oi /∈ T

10: /* determine whether the coordinator node satisfies the Constraint (3) */
11: for ∀Oi ∈ T do
12: if slacki + ε < bound0 then
13: return failed
14: return succeed

– Local Alert Phase. The monitoring node Nj at which violated constraints
have been detected sends a message containing a local resolution set Rj

(containing data objects from global top-k set T and current local top-k set)

and a set of partial numeric values Ci,j(t) of data object Oi in the local
resolution set to coordinator node.

– Partial Resolution Phase. The coordinator node determines whether all
violations can be solved based on the messages from violated nodes NR and
itself alone according to the Algorithm 1. If the coordinator node resolves all
violations successfully by assigning updated revision factors to the violated
nodes, the global top-k set remains unchanged and resolution process termi-
nates. Otherwise, the coordinator node is unable to rule out all violations
during this phase, the third phase is required.

– Global Resolution Phase. The coordinator node requests the current par-
tial values Ci,j(t) of data objects Oi in overall resolution set R = ∪Nj∈NRRj

as well as the baseline value Pj from all monitoring nodes. Once the coordi-
nator node receives responses from all monitoring nodes, it computes a new
top-k set and new revision factors of data objects in the resolution set R,
and notifies all monitoring nodes of a new top-k set T ′ and their new revision
factors. Our algorithm adopts even policy to divide the overall slack Si of
data object Oi among monitoring nodes and coordinator node. The revision
factors allocation algorithm is described in Algorithm 2.

For notational convenience, we extend our notation for partial numeric val-
ues and baseline value to the coordinator node by defining Ci,0(t) = 0 for
all data object Oi and P0 = maxOi∈O−R δi,0. We also define nodes set A
as all nodes involved in the resolution process. For each object Oi, Ci,A(t) =∑

0≤j≤m(Ci,j(t) + δi,j). Similarly, we define the sum of the baseline values from
the nodes set A, PA =

∑
0≤j≤m Pj .

Algorithm 2 Revision Factors Allocation Algorithm

Input: T ′,R, {Pj}, {Ci,j(t)}
Output: {δi,j}
1: /* compute the overall slack of Oi ∈ R */
2: for ∀Oi ∈ R do
3: if Oi ∈ T ′ then
4: Si = Ci,A(t)− PA + ε
5: else
6: Si = Ci,A(t)− PA

7: /* compute new revision factors {δi,j} using even policy */
8: for ∀Oi ∈ R do
9: ps← Si/(1 +m)

10: for j = 0→ m do
11: if Oi ∈ T ′ and j = 0 then
12: δi,j = Pj − Ci,j (t) + ps− ε
13: else
14: δi,j = Pj − Ci,j (t) + ps

4.2 Correctness and Cost Analysis

The goal of our algorithm is to keep the local top-k set at each node in line
with the global top-k set. If the global constraint is satisfied, the global top-
k remains valid. When local constraints are violated at distributed nodes, our
algorithm reallocates the numeric values of violated data objects by assigning
revision factors to distributed nodes.

Example 1. Consider a simple scenario with two monitoring nodes N1 and N2

and three data objects O1, O2 and O3, and current revision factors are zero. At
time t, the current data values at N1 are C1,1(t) = 4, C2,1(t) = 6 and C3,1(t) = 10
and at N2 are C1,2(t) = 3, C2,2(t) = 4 and C3,2(t) = 3. Let k = 1, ε = 0,
the current top-k set T = {O3}. However, the local top-k set at N2 is {O2},
which violates the constraints. Our algorithms find that partial resolution phases
are failed to resolve the violations, due to slack at coordinator node are zero.
The global resolution phase computes the new revision factors assigned to the
monitoring nodes, at coordinator node are δ2,0 = 1, δ3,0 = 2 and at N1 are
δ2,1 = −1, δ3,1 = −4 and at N2 are δ2,2 = 0, δ3,2 = 2. Then, the local constraints
at distributed node are satisfied and the global top-k set T = {O3} is valid.

Data objects not in the resolution set R can not be candidates for new
top-k set T ′, because their numeric values satisfy the current local constraints.
Therefore, the sum of all baseline values PA should be less than the minimum
numeric values Cl(t) of data object Ol in the previous top-k set T . Furthermore,
each data object Oi in the new top-k set T ′ satisfies: Ci(t) ≥ Cl(t) ≥ PA.
And, the overall slacks of data objects in resolution set R satisfy the following
inequation:

∀Oa ∈ T ′,∀Ob ∈ R− T ′ : Sa ≥ Sb and Sa ≥ 0 (6)

As described in Algorithm 2, we evenly allocate the overall slack Si of each
object Oi in the resolution set R to all nodes. As a result, the new local top-k set
computed by new revision factors at distributed nodes must be in line with the
new global top-k set, and local constraints (3) at distributed nodes are satisfied.

Our resolution algorithm maintains global slack at the coordinator node,
which is significant at partial resolution phase. If the partial resolution phase
resolves the violations successfully, the third phase does not require. Thus, the
communication cost at this phase is just assigning updated revision factors to
the violated node, and number of 2 ∗ |NR| messages are exchanged altogether.
If all three phases are required, the total of |NR| + 3m messages are necessary
to perform complete resolution.

If the global slack retained at coordinator node is tight, the probability of
failure at partial resolution phase becomes high, incurring more communication
cost at global resolution phase. However, tight slacks at distributed monitor-
ing nodes result in frequent violations of local constraints. Our even policy for
allocating additional slacks balances these two costs well.

5 Experiments

In this section, we provide an experimental evaluation on the communication cost
of our resolution algorithm. We implement two different top-k monitoring algo-
rithms as baseline algorithms. One algorithm retains zero slack at coordinator
node (LSA), and another algorithm retains zero slack at distributed monitoring
nodes (GSA).

5.1 Setup

The experiments are conducted on a cluster of 16 Dell R210 servers with Giga-
bit Ethernet interconnect. Each server has a 2.4 GHz Intel processor and 8 GB
RAM. As shown in Fig. 1, one server works as the coordinator node and the
remaining nodes work as the monitoring nodes. The monitoring node can ex-
change messages with the coordinator node, but can not communicate with each
other. Additionally, the coordinator node can send broadcast messages received
by all monitoring nodes.

We implement our algorithm on top of Apache Storm, a free and open source
distributed realtime computation system, which makes it easy to reliably process
unbounded streams of data. All of nodes are implemented as Bolt components
within the Storm system, and receive data objects continuously from a Spout
component, which is a source of data streams. They constitute a Topology run
on the Storm system. The version of Apache Storm we used is 1.0.2 in our
experiments.

We evaluated the efficiency of our algorithm against sliding window unit size
w, number of monitoring nodes m, approximation parameter ε respectively. The
default values of the parameters are listed in Table 1. Parameters are varied as
follows:

– number of monitoring nodes m: 3, 5, 8, 10, 15

– sliding window unit size w: 5s, 10s, 15s, 20s

– approximation parameter ε: 0, 25, 50, 75, 100

Table 1. Experimental parameters

Notation Definition(Default Value)

k number of objects to track in top-k set (10)

m number of monitoring nodes (10)

ε approximation parameter (0)

W monitoring window size (15min)

w sliding window unit size (10s)

5.2 Data and Queries

We conducted our experiments on both synthetic dataset and real dataset. The
datasets are described in detail as follows:

– Synthetic Dataset: The synthetic dataset includes random data records,
which follow Zipf distribution [19]. The distribution parameter we used is 2.
Each data record contains ID of data object and the time of generation. The
goal of experiment is continuous querying the top k data objects with the
largest number of occurrences.

– Real Dataset: The real dataset consists of a portion of real vehicle passage
records from the traffic surveillance system of a major city. The dataset con-
tains 5,762,391 passage records, which are generated within 6 hours (about
267 passage records per second), and involves about 1000 detecting loca-
tions on the main roads. Our experiments continuously monitor the top k
detecting locations with the largest number of vehicle passage records.

Our experiments continuously monitor the top k data objects over distributed
data streams within last 15 minutes, and the total communication cost is the
number of messages exchanged for processing 100 sliding windows.

5.3 Evaluation

0

500

1000

1500

2000

2500

3000

3500

3 5 8 10 15To
ta

l C
om

m
un

ic
at

io
n

C
os

t

Number	 of	nodes	m

resolution LSA GSA

(a) w=5s

0

500

1000

1500

2000

2500

3000

3500

3 5 8 10 15To
ta

l C
om

m
un

ic
at

io
n

C
os

t

Number	 of	nodes	m

resolution LSA GSA

(b) w=10s

0

500

1000

1500

2000

2500

3000

3500

3 5 8 10 15To
ta

l C
om

m
un

ic
at

io
n

C
os

t

Number	 of	nodes	m

resolution LSA GSA

(c) w=15s

0
500
1000
1500
2000
2500
3000
3500
4000

3 5 8 10 15To
ta

l C
om

m
un

ic
at

io
n

C
os

t

Number	 of	nodes	m

resolution LSA GSA

(d) w=20s

Fig. 3. Varying number of nodes m using synthetic dataset

0

1000

2000

3000

4000

5000

6000

3 5 8 10 15To
ta
lC
om
m
un
ic
at
io
n
C
os
t

Number of nodes m

resolution LSA GSA

(a) w=5s

0

1000

2000

3000

4000

5000

6000

3 5 8 10 15To
ta

l C
om

m
un

ic
at

io
n

C
os

t

Number of nodes m

resolution LSA GSA

(b) w=10s

0

1000

2000

3000

4000

5000

6000

3 5 8 10 15To
ta

l C
om

m
un

ic
at

io
n

C
os

t

Number of nodes m

resolution LSA GSA

(c) w=15s

0

1000

2000

3000

4000

5000

6000

3 5 8 10 15To
ta

l C
om

m
un

ic
at

io
n

C
os

t

Number of nodes m

resolution LSA GSA

(d) w=20s

Fig. 4. Varying number of nodes m using real dataset

As shown in Fig. 3 and Fig. 4, we vary the number of monitoring nodes m
with diverse window unit size w to demonstrate the efficiency and scalability of
our resolution algorithm using synthetic dataset and real dataset.

Normally, as the number of monitoring nodes m increases, the overall commu-
nication cost of monitoring infrastructure is increased correspondingly. Because
the global resolution phase in our resolution algorithm needs to request infor-
mations from all distributed nodes to resolve violations of local constraints. Our
resolution algorithm outperforms baseline algorithms (LSA algorithm and GSA
algorithm) in all cases from the figures. This is because our resolution algorithm
retains additional slack at both coordinator node and distributed monitoring
nodes and reduces vast communication cost by solving the violated constraints
detected at monitoring nodes successfully.

Fig. 5 shows that the total communication cost of all algorithms decreases
when the user-specified approximation parameter ε grows. With larger ε-error,
there are less violations of local constraints at distributed nodes, resulting in
lower communication overhead. However, the global top-k result is not accurate,
and the error tolerance lies on the various application scenarios.

In all cases, our algorithm achieves a significant reduction in communication
cost compared to baseline algorithms. Moreover, with the increase of monitor-
ing nodes, the gap between our resolution algorithm and baseline algorithms
becomes wider. These experiments results demonstrate the efficiency and scala-
bility of our algorithm.

0
500
1000
1500
2000
2500
3000
3500
4000

0 25 50 75 100To
ta

l C
om

m
un

ic
at

io
n

C
os

t

Approximation	 parameter	ɛ	

resolution LSA GSA

Fig. 5. Varying approximation parameter ε using real dataset, w=10s,
m=10

6 Conclusions

In this paper, we studied the problem of top-k monitoring over distributed data
streams in sliding window case. We propose a novel algorithm, which reallocates
numeric values of data objects among distributed monitoring nodes by assigning
revision factors to deal with distributed top-k monitoring problem and imple-
ment our algorithm on top of Apache Storm, on which extensive experiments
are conducted to demonstrate the efficiency and scalability of our algorithm. Fu-
ture work will concentrate on monitoring other functions over distributed data
streams.

Acknowledgment. This work was supported in part by the National Basic
Research 973 Program of China under Grant No. 2015CB352502, the National
Natural Science Foundation of China under Grant Nos. 61272092 and 61572289,
the Natural Science Foundation of Shandong Province of China under Grant
Nos. ZR2012FZ004 and ZR2015FM002, the Science and Technology Develop-
ment Program of Shandong Province of China under Grant No. 2014GGE27178,
and the NSERC Discovery Grants.

References

1. Twitter storm. http://storm.apache.org/

2. Amagata, D., Hara, T., Nishio, S.: Sliding window top-k dominating query pro-
cessing over distributed data streams. Distributed and Parallel Databases 34(4),
535–566 (2016), http://dx.doi.org/10.1007/s10619-015-7187-9

3. Babcock, B., Olston, C.: Distributed top-k monitoring. In: Proceedings of the 2003
ACM SIGMOD International Conference on Management of Data, San Diego, Cal-
ifornia, USA, June 9-12, 2003. pp. 28–39 (2003), http://doi.acm.org/10.1145/
872757.872764

4. Bruno, N., Gravano, L., Marian, A.: Evaluating top-k queries over web-accessible
databases. In: Proceedings of the 18th International Conference on Data Engi-
neering, San Jose, CA, USA, February 26 - March 1, 2002. pp. 369–380 (2002),
http://dx.doi.org/10.1109/ICDE.2002.994751

5. Cao, P., Wang, Z.: Efficient top-k query calculation in distributed networks. In:
Proceedings of the Twenty-Third Annual ACM Symposium on Principles of Dis-
tributed Computing, PODC 2004, St. John’s, Newfoundland, Canada, July 25-28,
2004. pp. 206–215 (2004), http://doi.acm.org/10.1145/1011767.1011798

6. Cormode, G.: The continuous distributed monitoring model. SIGMOD Record
42(1), 5–14 (2013), http://doi.acm.org/10.1145/2481528.2481530

7. Fagin, R., Lotem, A., Naor, M.: Optimal aggregation algorithms for middleware.
In: Proceedings of the Twentieth ACM SIGACT-SIGMOD-SIGART Symposium
on Principles of Database Systems, May 21-23, 2001, Santa Barbara, California,
USA (2001), http://doi.acm.org/10.1145/375551.375567

8. Giatrakos, N., Deligiannakis, A., Garofalakis, M.N., Sharfman, I., Schuster, A.:
Prediction-based geometric monitoring over distributed data streams. In: Proceed-
ings of the ACM SIGMOD International Conference on Management of Data,
SIGMOD 2012, Scottsdale, AZ, USA, May 20-24, 2012. pp. 265–276 (2012),
http://doi.acm.org/10.1145/2213836.2213867

9. Gupta, R., Ramamritham, K., Mohania, M.K.: Ratio threshold queries over dis-
tributed data sources. In: Proceedings of the 26th International Conference on
Data Engineering, ICDE 2010, March 1-6, 2010, Long Beach, California, USA. pp.
581–584 (2010), http://dx.doi.org/10.1109/ICDE.2010.5447920

10. Kashyap, S.R., Ramamirtham, J., Rastogi, R., Shukla, P.: Efficient constraint mon-
itoring using adaptive thresholds. In: Proceedings of the 24th International Con-
ference on Data Engineering, ICDE 2008, April 7-12, 2008, Cancún, México. pp.
526–535 (2008), http://dx.doi.org/10.1109/ICDE.2008.4497461

11. Keren, D., Sharfman, I., Schuster, A., Livne, A.: Shape sensitive geometric moni-
toring. IEEE Trans. Knowl. Data Eng. 24(8), 1520–1535 (2012), http://dx.doi.
org/10.1109/TKDE.2011.102

12. Lazerson, A., Keren, D., Schuster, A.: Lightweight monitoring of distributed
streams. In: Proceedings of the 22nd ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, San Francisco, CA, USA, August 13-17,
2016. pp. 1685–1694 (2016), http://doi.acm.org/10.1145/2939672.2939820

13. Lazerson, A., Sharfman, I., Keren, D., Schuster, A., Garofalakis, M.N., Samoladas,
V.: Monitoring distributed streams using convex decompositions. PVLDB 8(5),
545–556 (2015), http://www.vldb.org/pvldb/vol8/p545-lazerson.pdf

14. Mouratidis, K., Bakiras, S., Papadias, D.: Continuous monitoring of top-k queries
over sliding windows. In: Proceedings of the ACM SIGMOD International Con-
ference on Management of Data, Chicago, Illinois, USA, June 27-29, 2006. pp.
635–646 (2006), http://doi.acm.org/10.1145/1142473.1142544

15. Papadias, D., Tao, Y., Fu, G., Seeger, B.: Progressive skyline computation in
database systems. ACM Trans. Database Syst. 30(1), 41–82 (2005), http://doi.
acm.org/10.1145/1061318.1061320

16. Sharfman, I., Schuster, A., Keren, D.: A geometric approach to monitoring thresh-
old functions over distributed data streams. In: Proceedings of the ACM SIGMOD

International Conference on Management of Data, Chicago, Illinois, USA, June
27-29, 2006. pp. 301–312 (2006), http://doi.acm.org/10.1145/1142473.1142508

17. Yang, D., Shastri, A., Rundensteiner, E.A., Ward, M.O.: An optimal strategy for
monitoring top-k queries in streaming windows. In: EDBT 2011, 14th Interna-
tional Conference on Extending Database Technology, Uppsala, Sweden, March 21-
24, 2011, Proceedings. pp. 57–68 (2011), http://doi.acm.org/10.1145/1951365.
1951375

18. Yi, K., Zhang, Q.: Optimal tracking of distributed heavy hitters and quantiles. In:
Proceedings of the Twenty-Eigth ACM SIGMOD-SIGACT-SIGART Symposium
on Principles of Database Systems, PODS 2009, June 19 - July 1, 2009, Providence,
Rhode Island, USA. pp. 167–174 (2009), http://doi.acm.org/10.1145/1559795.
1559820

19. Zipf, G.K.: Selected studies of the principle of relative frequency in language. Lan-
guage 9(1), 89–92 (1932)

